CHAPTER Solutions Key

Similarity

ARE YOU READY? PAGE 451						
1. E	2. F					
3. B	4. D					
5. A						
6. $\frac{16}{20} = \frac{4(4)}{4(5)} = \frac{4}{5}$	7. $\frac{14}{21} = \frac{7(2)}{7(3)} = \frac{2}{3}$					
$8. \ \frac{33}{121} = \frac{11(3)}{11(11)} = \frac{3}{11}$	9. $\frac{56}{80} = \frac{8(7)}{8(10)} = \frac{7}{10}$					
10. 18 to 24 6(3) to 6(4) 3 to 4	11. 34 to 18 2(17) to 2(9) 17 to 9					
12. Total # of CDs is: 36 + 18 + 34 + 24 = 7 36 to 112 4(9) to 4(28) 9 to 28	13. 112 to 24 112 8(14) to 8(3) 14 to 3					
14. yes; pentagon	15. yes; hexagon					
16. no	17. yes; octagon					
18. $P = 2\ell + 2w$ = 2(8.3) + 2(4.2) = 25 ft	19. $P = 6s$ = 6(30) = 180 cm					
20. $P = 4s$ = 4(11.4) = 45.6 m	21. <i>P</i> = 5 <i>s</i> = 5(3.9) = 19.5 in.					

7-1 RATIO AND PROPORTION, PAGES 454-459

CHECK IT OUT! PAGES 454-456

1. slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_2}{x_2 - x_2}$$

= $\frac{5 - 3}{6 - (-2)}$
= $\frac{2}{8} = \frac{1}{4}$

2. Let ∠ measures be x, 6x, and 13x. Then x + 6x + 13x = 180. After like terms are combined, 20x = 180. So x = 9. The ∠ measures are $x = 9^{\circ}$, $6x = 6(9) = 54^{\circ}$, and $13x = 13(9) = 117^{\circ}$.

3a.
$$\frac{3}{8} = \frac{x}{56}$$

 $3(56) = x(8)$
 $168 = 8x$
 $x = 21$
b. $\frac{2y}{9} = \frac{8}{4y}$
 $2y(4y) = 9(8)$
 $8y^2 = 72$
 $y^2 = 9$
 $y = \pm 3$
c. $\frac{d}{3} = \frac{6}{2}$
 $d(2) = 3(6)$
 $2d = 18$
 $d = 9$
d. $\frac{x+3}{4} = \frac{9}{x+3}$
 $(x+3)(x+3) = 4(9)$
 $x^2 + 6x + 9 = 36$
 $x^2 + 6x - 27 = 0$
 $(x-3)(x+9) = 0$
 $x = 3 \text{ or } -9$

4. 16s = 20t $\frac{t}{s} = \frac{16}{20}$ $\frac{t}{s} = \frac{4}{5} = 4:5$

5. 1 Understand the Problem

Answer will be height of new tower. **2 Make a Plan**

Let *y* be height of new tower. Write a proportion that compares the ratios of model height to actual height.

 $\frac{\text{height of 1st tower}}{\text{height of 1st model}} = \frac{\text{height of new tower}}{\text{height of new model}}$ $\frac{1328}{8} = \frac{y}{9.2}$ **3 Solve** $\frac{1328}{8} = \frac{y}{9.2}$ 1328(9.2) = 8(y)
12,217.6 = 8y y = 1527.2 m **4 Look Back**

Check answer in original problem. Ratio of actual height to model height is 1328:8, or 166:1. Ratio of actual height to model height for new tower is 1527.2:9.2 In simplest form, this ratio is also 166:1. So ratios are equal, and answer is correct.

THINK AND DISCUSS, PAGE 457

- **1.** No; ratio 6:7 is < 1, but ratio 7:6 is > 1.
- **2.** She can see if cross products are =. Since 3(28) = 7(12), ratios do form a proportion. Therefore ratios are = and fractions are equivalent.

EXERCISES, PAGES 457–459 GUIDED PRACTICE, PAGE 457

- 1. means: 3 and 2; extremes: 1 and 6
- **2.** *sv*; *tu*

3. slope
$$= \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

 $= \frac{4 - 3}{1 - (-1)} = \frac{1}{2}$
 $= \frac{4}{4} = \frac{1}{1}$
4. slope $= \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$
 $= \frac{2 - (-2)}{2 - (-2)}$
 $= \frac{4}{4} = \frac{1}{1}$

5. slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{-1 - 1}{2 - (-1)}$
= $\frac{-2}{3} = -\frac{2}{3}$

- 6. Let side lengths be 2x, 4x, 5x, and 7x. Then 2x + 4x + 5x + 7x = 36. After like terms are combined, 18x = 36. So x = 2. The shortest side measures 2x = 2(2) = 4 m.
- 7. Let ∠ measures be 5x, 12x, and 19x. Then 5x + 12x + 19x = 180. After like terms are combined, 36x = 180. So x = 5. The largest ∠ measures $19x = 19(5) = 95^{\circ}$.

8.
$$\frac{x}{2} = \frac{40}{16}$$

 $x(16) = 2(40)$
 $16x = 80$
 $x = 5$
9. $\frac{7}{y} = \frac{21}{27}$
 $7(27) = y(21)$
 $189 = 21y$
 $y = 9$
10. $\frac{6}{58} = \frac{t}{29}$
 $6(29) = 58(t)$
 $174 = 58t$
 $t = 3$
11. $\frac{y}{3} = \frac{27}{y}$
 $y(y) = 3(27)$
 $y^2 = 81$
 $t = 3$
 $y = \pm 9$
12. $\frac{16}{x-1} = \frac{x-1}{4}$
 $16(4) = (x-1)(x-1)$
 $64 = x^2 - 2x + 1$
 $0 = x^2 - 2x - 63$
 $0 = (x-9)(x+7)$
 $x = 9 \text{ or } 3$
 $x = 9 \text{ or } -7$

14.
$$2a = 8b$$
15. $6x = 27y$
 $\frac{a}{b} = \frac{8}{2}$
 $\frac{6}{27} = \frac{y}{x}$
 $\frac{a}{b} = \frac{4}{1} = 4:1$
 $\frac{y}{x} = \frac{2}{9} = 2:9$

16. 1 Understand the Problem

Answer will be height of Arkansas State Capitol. 2 Make a Plan

Let *x* be height of Arkansas State Capitol. Write a proportion that compares the ratios of height to width.

 $\frac{\text{height of U.S. Capitol}}{\text{width of U.S. Capitol}} = \frac{\text{height of Arkansas Capitol}}{\text{width of Arkansas Capitol}}$ $\frac{\frac{288}{752}}{\frac{288}{752}} = \frac{x}{564}$ $\frac{288}{752} = \frac{x}{564}$ 288(564) = 752(x)

$$162,432 = 752x$$

$$x = 216 \text{ ft}$$

4 Look Back

Check answer in original problem. Ratio of height to width for U.S. Capitol is 288:752, or 18:47. Ratio of height to width for Arkansas State Capitol is 216:564 In simplest form, this ratio is also 18:47. So ratios are equal, and answer is correct. | PRACTICE AND PROBLEM SOLVING, PAGES 458-459

17. slope
$$= \frac{4-1}{1-0} = \frac{3}{1}$$

18. slope $= \frac{-4+1}{3-0} = -\frac{1}{1}$
19. slope $= \frac{0+3}{3-1} = \frac{3}{2}$
20. Let side lengths be 4x and 4x, and let base length be 7x.
 $4x + 4x + 7x = 52.5$
 $15x = 52.5$
 $x = 3.5$
length of base = 7(3.5) = 24.5 cm
21. Let \angle measures be 2x, 3x, 2x, and 3x. By Quad. \angle
Sum Thm., sum of \angle measures is 360°.
 $2x + 3x + 2x + 3x = 360$
 $10x = 360$
 $x = 36$
 \angle measures are 2(36) = 72°, 3(36) = 108°, 72°, and 108°.
22. $\frac{6}{8} = \frac{9}{y}$
 $23. \frac{x}{14} = \frac{50}{35}$
 $6y = 8(9) = 72$
 $y = 12$
 $24. \frac{7}{12} = \frac{3}{8}$
 $8z = 12(3) = 36$
 $z = 4.5$
25. $\frac{2m+2}{3} = \frac{12}{2m+2}$
 $(2m+2)^2 = 3(12)$
 $4m^2 + 8m + 4 = 36$
 $4m^2 + 8m + 4 = 36$
 $4m^2 + 8m - 32 = 0$
 $m^2 + 2m - 8 = 0$
 $(m-2)(m+4) = 0$
 $m = 2 \text{ or } -4$
26. $\frac{5y}{9} = \frac{125}{y}$
 $5y^2 = 16(125)$
 $5y^2 = 2000$
 $y^2 = 400$
 $y^2 = 400$
 $y = \pm 20$
28. $5y = 25x$
 $\frac{5}{25} = \frac{x}{y}$
 $\frac{x}{y} = \frac{1}{5}$
Ratio is $3:5.$
30. Let x represent height of actual windmill.
height of windmill
 $\frac{x}{20} = \frac{1.2}{0.8}$
 $0.8x = 20(1.2) = 24$
 $x = 30$ m
31. $\frac{a}{b} = \frac{5}{7}$
 $7a = 5b$
 $7a = 5b$

33.
$$\frac{a}{b} = \frac{5}{7}$$

 $7a = 5b$
 $\frac{7a}{5} = b$
 $\frac{a}{5} = \frac{b}{7}$
34. Cowboys lost
 $16 - 10 = 6$ games.
wins: losses = 10:6
 $= \frac{10}{2} \cdot \frac{6}{2}$
 $= 5:3$
35. slope $= \frac{5+4}{21+6}$
 $= \frac{9}{27} = \frac{1}{3}$
36. slope $= \frac{1+5}{6-16}$
 $= \frac{6}{-10} = -\frac{3}{5}$
37. slope $= \frac{5.5+2}{4-6.5}$
 $= \frac{7.5}{-2.5} = -3$
38. slope $= \frac{0-1}{-2+6} = -\frac{1}{4}$
 $12,000 = 15x$
 $12,000 = 15x$
 $x = 800$ in.
 $= 66$ ft 8 in
40. Quad. is a rect. because opp. sides are \cong and
diags. are \cong .
41. Areas are $6^2 = 36$ cm² and $9^2 = 81$ cm².

$$\frac{36}{81} = \frac{4}{9}$$
42. $\frac{5}{3.5} = \frac{20}{w}$
 $5w = 3.5(20) = 70$
 $w = 14$ in.

43. A ratio is a comparison of 2 numbers by div. A proportion is an eqn. stating that 2 ratios are =.

TEST PREP, PAGE 459

44. B

$$x + 4x + 5x = 18$$

 $10x = 18$
 $x = 1.8$ in.
 $4x = 4(1.8) = 7.2$ in.,
 $5x = 5(1.8) = 9$ in.
45. H
 $\frac{3}{5} = \frac{x}{y}$
 $3y = 5x$
 $y = \frac{5x}{3}$
 $\frac{y}{5} = \frac{x}{3}$

46. A

$$\frac{5}{2} = \frac{1.25}{v} \\ 5v = 2(1.25) = 2.5 \\ v = \frac{1}{2}$$

47. First, cross multiply: 36x = 15(72) = 1080Then divide both sides by 36: $\frac{36x}{36} = \frac{1080}{36}$ $\frac{36}{36} = \frac{36}{36}$ Finally, simplify: *x* = 30 You must assum that $x \neq 0$.

CHALLENGE AND EXTEND, PAGE 459
48. Perimeters are
$$2(3) + 2(5) = 16$$

and $2x + 2(4) = 2x + 8$.
 $\frac{4}{7} = \frac{16}{2x + 8}$
 $4(2x + 8) = 7(16)$
 $8x + 32 = 112$
 $8x = 80$
 $x = 10$
49. Given $\frac{a}{b} = \frac{c}{d}$, add 1 to both sides of eqn:
 $\frac{a}{b} + \frac{b}{b} = \frac{c}{d} + \frac{d}{d}$
Adding fractions on both sides of eqn. gives
 $\frac{a + b}{b} = \frac{c + d}{d}$.
50. Possible proportions are $\frac{1}{2} = \frac{3}{6}, \frac{1}{3} = \frac{2}{6}, \frac{2}{1} = \frac{6}{3}, \frac{2}{6} = \frac{1}{3}, \frac{3}{1} = \frac{6}{2}, \frac{3}{6} = \frac{1}{2}, \frac{6}{2} = \frac{3}{1}, \text{ and } \frac{6}{3} = \frac{2}{1}.$
There are 8 possible proportions. Total number of outcomes = $4! = 24$.
Probability $= \frac{8}{24} = \frac{1}{3}$
51. $\frac{x^2 + 9x + 18}{x^2 - 36} = \frac{(x + 6)(x + 3)}{(x + 6)(x - 6)}$
 $= \frac{x + 3}{x - 6}, \text{ where } x \neq \pm 6$
SPIRAL REVIEW, PAGE 459
52. $y - 6(0) = -3$
 $y = -3$
 $-6x = -6$
 $x = 1$
54. $y - 6(-4) = -3$
 $y = -27$
55. Think: Use Same-Side
Ext. \measuredangle Thm. to find y,
 $y = -27$
then use Vert. \measuredangle Thm.
 $3y + 2y + 20 = 180$
 $5y = 160$
 $y = 32$
 $m \angle ABD = 3y$
 $= 3(32) = 96^{\circ}$
56. Think: Use Vert. \measuredangle Thm. 57. $9^2 \pm 5^2 + 8^2$
 $m \angle CDB = 2y + 20$
81 $\frac{\pi}{2} 25 + 64$

of

= 96° = 2(32) + 2081 < 89 = 84° \triangle is acute. **59.** $25^2 \stackrel{?}{=} 7^2 + 24^2$ **58.** $20^2 \stackrel{?}{=} 8^2 + 15^2$ 625 ≟ 49 + 576 400 ^² = 64 + 225 400 > 289 625 = 625 \triangle is obtuse. \triangle is a right triangle.

TECHNOLOGY LAB: EXPLORE THE GOLDEN RATIO, PAGES 460-461

ACTIVITY 1

- 1. Check students' work. The equal ratios have the approximate value of 1.62.
- 2. The ratios have the same value as the ratios in Step 1.

TRY THIS, PAGE 461

- 1. If side length of square is 2 units, then MB = 1 unit and BC = 2 units. \overline{MC} is hyp. of rt. \triangle formed by \overline{MB} and \overline{BC} . By Pyth. Thm., $MC = \sqrt{5}$ units $AE = \sqrt{5} + 1$ units $\frac{AE}{EF} = \frac{\sqrt{5} + 1}{2} \approx 1.618$
- $\frac{RE}{EF} = \frac{\sqrt{5} + 1}{2} \approx 1.618$ **2.** $BE = \sqrt{5} - 1$ units
- $\frac{BE}{EF} = \frac{\sqrt{5} 1}{2} \approx 0.618$

The sign of the numerator in this fraction is different from that of the fraction in **Try This** Problem 1.

- 3. Quotients have values that approach 1.618.
- 4. There are 1 + 1 = 2 rabbits.
- 5. There are 8 + 13 = 21 petals on the daisy.

6. No;
$$\frac{5.4}{4} \approx 1.4$$
 7. Yes; $\frac{4.5}{2.8} \approx 1.6$

7-2 RATIOS IN SIMILAR POLYGONS, PAGES 462-467

CHECK IT OUT! PAGES 462-464

1. $\angle C \cong \angle H$. By Rt. $\angle \cong$ Thm., $\angle B \cong \angle G$. By 3rd & Thm., $\angle A \cong \angle J$. $\frac{AB}{JG} = \frac{10}{5} = 2$, $\frac{BC}{GH} = \frac{6}{3} = 2$, $\frac{AC}{JH} = \frac{11.6}{5.8} = 2$ 2. Step 1 Identify pairs of \cong &. $\angle L \cong \angle P$ (Given) $\angle M \cong \angle N$ (Rt. $\angle \cong$ Thm.) $\angle J \cong \angle S$ (3rd & Thm.) Step 2 Compare corr sides

Step 2 Compare corr. sides.

$$\frac{JL}{SP} = \frac{75}{30} = \frac{5}{2}, \frac{LM}{PN} = \frac{60}{24} = \frac{5}{2}, \frac{JM}{SN} = \frac{45}{18} = \frac{5}{2}$$
yes; similarity ratio is $\frac{5}{2}$, and $\triangle LMJ \sim \triangle PNS$.

3. Let *x* be length of the model boxcar in inches. Rect. model of boxcar is ~ to rect. boxcar, so corr. lengths are proportional.

ength of boxcar
length of model = width of boxcar
width of model
$$\frac{36.25}{x} = \frac{9}{1.25}$$
$$36.25(1.25) = 9x$$
$$45.3125 = 9x$$
$$x = \frac{45.3125}{9} \approx 5 \text{ in.}$$

THINK AND DISCUSS, PAGE 464

- **1.** \cong symbol is formed.
- 2. Sides of rect. *EFGH* are 9 times as long as corr. sides of rect. *ABCD*.
- 3. Possible answers: reg. polygons of same type; (5)

Definition: Two polygons are ~ if and only if corr. ▲ are ≅ and their corr. sides are proportional. Similar P		
Example: A Second Secon	Nonexample: Possible answer:	

EXERCISES, PAGES 465–467 GUIDED PRACTICE, PAGE 465

- 1. Possible answer: students' desks
- 2. $\angle M \cong \angle U$ and $\angle N \cong \angle V$. By $\operatorname{3rd} \measuredangle$ Thm., $\angle P \cong \angle W$. $\frac{MN}{UV} = \frac{4}{8} = \frac{1}{2}, \frac{MP}{UW} = \frac{3}{6} = \frac{1}{2}, \frac{NP}{VW} = \frac{2}{4} = \frac{1}{2}$
- **3.** $\angle A \cong \angle H$ and $\angle C \cong \angle K$. By def. of $\cong \measuredangle$, and taking vertices clockwise in both figures, $\angle B \cong \angle J$ and $\angle D \cong \angle L$.

$$\frac{AB}{HJ} = \frac{8}{12} = \frac{2}{3}, \frac{BC}{JK} = \frac{4}{6} = \frac{2}{3}, \frac{CD}{KL} = \frac{4}{6} = \frac{2}{3}, \frac{DA}{LH} = \frac{8}{12} = \frac{2}{3}$$

- 4. Step 1 Identify pairs of $\cong \&$. Think: All & of a rect. are rt. & and are \cong . $\angle A \cong \angle E$, $\angle B \cong \angle F$, $\angle C \cong \angle G$, and $\angle D \cong \angle H$. Step 2 Compare corr. sides. $\frac{AB}{EF} = \frac{135}{90} = \frac{3}{2}, \frac{AD}{EH} = \frac{45}{30} = \frac{3}{2}$ Yes; since opp. sides of a rect. are \cong , corr. sides
- are proportional. Similarity ratio is $\frac{3}{2}$, and *ABCD* ~ *EFGH*.
- 5. Step 1 Identify pairs of $\cong \measuredangle$. $\angle M \cong \angle W, \angle P \cong \angle U$ (Given) $\angle R \cong \angle X$ (3rd \measuredangle Thm.) Step 2 Compare corr. sides. $\frac{RM}{XW} = \frac{8}{12} = \frac{2}{3}, \frac{MP}{WU} = \frac{10}{15} = \frac{2}{3}, \frac{RP}{XU} = \frac{4}{6} = \frac{2}{3}$ yes; similarity ratio is $\frac{2}{3}$, and $\triangle RMP \sim \triangle XWU$.
- Let x be height of reproduction in feet. Reproduction is ~ to original, so corr. lengths are proportional. height of reproduction width of reproduction

$$\frac{x}{73} = \frac{24}{58}$$

$$58x = 73(24) = 1752$$

$$x = \frac{1752}{58} \approx 30 \text{ ft}$$

PRACTICE AND PROBLEM SOLVING, PAGES 465-466

7.
$$\angle K \cong \angle T, \angle L \cong \angle U$$
 (Given)
 $\angle J \cong \angle S, \angle M \cong \angle V$ (Rt. $\angle \cong$ Thm.)
 $\frac{JK}{ST} = \frac{20}{24} = \frac{5}{6}, \frac{KL}{TU} = \frac{14}{16.8} = \frac{5}{6}, \frac{LM}{UV} = \frac{30}{36} = \frac{5}{6}, \frac{JM}{SV} = \frac{10}{12} = \frac{5}{6}$

8.
$$\angle A \cong \angle X, \angle C \cong \angle Z$$
 (Given)
 $\angle B \cong \angle Y$ (3rd & Thm.)
 $\frac{AB}{XY} = \frac{8}{4} = 2, \frac{BC}{YZ} = \frac{6}{3} = 2, \frac{CA}{ZX} = \frac{12}{6} = 2$

9. Step 1 Identify pairs of
$$\cong \measuredangle$$
.
 $m \angle R = 90 - 53 = 37^{\circ}$
 $\angle R \cong \angle U$ (Def. of $\cong \measuredangle$)
 $\angle S \cong \angle Z$ (Rt. $\angle \cong$ Thm.)
 $\angle Q \cong \angle X$ (3rd \measuredangle Thm.)
Step 2 Compare corr. sides.
 $\frac{QR}{XU} = \frac{35}{40} = \frac{7}{8}, \frac{QS}{XZ} = \frac{21}{24} = \frac{7}{8}, \frac{RS}{UZ} = \frac{28}{32} = \frac{7}{8}$
yes; similarity ratio $= \frac{7}{8}; \triangle RSQ \sim \triangle UZX$

- **10.** Step 1 Identify pairs of $\cong \measuredangle$. $\angle A \cong \angle M, \angle B \cong \angle J, \angle C \cong \angle K, \angle D \cong \angle L$ (Rt. $\angle \cong$ Thm.) Step 2 Compare corr. sides. $\frac{AB}{MJ} = \frac{18}{24} = \frac{3}{4}, \frac{AD}{ML} = \frac{AD}{JK} = \frac{36}{54} = \frac{2}{3}$ no; the rectangles are not similar
- 11. $\frac{\text{model length}}{\text{car length}} = \frac{1}{56}$ $\frac{3}{\ell} = \frac{1}{56}$ $3(56) = \ell$ $\ell = 168 \text{ in.} = 14 \text{ ft}$
- 12. Let x, y be side lengths of squares ABCD and PQRS. Areas are x^2 and y^2 , so $\frac{x^2}{y^2} = \frac{4}{36} = \frac{1}{9}$ $\frac{x}{y} = \sqrt{\frac{1}{9}} = \frac{1}{3}$ ~ ratio of ABCD to PQRS = $\frac{x}{y} = \frac{1}{3}$
 - ~ ratio of PQRS to ABCD = $\frac{y}{x} = \frac{3}{1}$
- **13.** sometimes (iff acute \measuredangle are \cong)
- **14.** always (all (rt.) & are \cong , all side-length ratios are =)
- 15. never (in trap., 1 pair sides are ∦, so opp. pairs of cannot be ≅; but in □, they are ≅)
- 16. always (by CPCTC, all corr. ▲ are ≅, and since corr. sides ≅, ~ ratio = 1)
- **17.** sometimes (similar polygons are \cong iff \sim ratio = 1)
- 18. By def. of reg. polygons, corr. int. ▲ are ≅, and side lengths are ≅ and thus proportional. So any 2 reg. polygons with same number of sides are ~.

19.
$$\frac{EF}{AB} = \frac{FG}{BC}$$

$$\frac{x+3}{4} = \frac{2x-4}{3}$$

$$3(x+3) = 4(2x-4)$$

$$3x+9 = 8x-16$$

$$25 = 5x$$

$$x = 5$$
20.
$$\frac{MP}{XZ} = \frac{NP}{YZ}$$

$$\frac{x+5}{30} = \frac{4x-10}{75}$$

$$75(x+5) = 30(4x-10)$$

$$5(x+5) = 2(4x-10)$$

$$5x+25 = 8x-20$$

$$45 = 3x$$

$$x = 15$$

21. Possible answer: Statue of Liberty's nose Statue of Liberty's hand $\frac{x \text{ ft}}{16.4 \text{ ft}} \approx \frac{2 \text{ in.}}{7 \text{ in.}}$ $7x \approx 2(16.4) = 32.8$ $x \approx 4.7$

Estimated length of Statue of Liberty's nose is 4.7 ft (or between 4.5 ft and 5 ft).

and their corr. sides are proportional. If corr. & of 2 polygons are \cong and their corr. sides are proportional, then polygons are \sim . **23.** $\Box JKLM \sim \Box NOPQ \rightarrow \angle O \cong \angle K \rightarrow m \angle O = 75^{\circ}$ $NOPQ a \Box \rightarrow \angle Q \cong \angle O \rightarrow m \angle Q = 75^{\circ}$ $\angle O$ and $\angle Q$ are 75° \measuredangle . 24. $\frac{\text{width on blueprint}}{\text{actual width}} = \frac{\text{length on blueprint}}{\text{actual length}}$ actual width actual length $\frac{w}{14} = \frac{3.5}{18}$ 18w = 14(3.5) = 49 $w = \frac{49}{18} \approx 2.7 \text{ in.}$ 25. Polygons must be \cong . Since polygons are \sim , their corr. \measuredangle must be \cong . Since ~ ratio is 1, corr. sides must have same length. 26a. height of tree on backdrop =height of tree on flat 10 $\frac{\frac{0.9}{h} = \frac{1}{10}}{0.9(10) = h}$ h = 9 ftheight of tree on flat height of actual tree $\frac{9}{H} =$ 2 9(2) = H $H = 18 \, {\rm ft}$ **c.** ~ ratio = $\frac{\text{height of tree on backdrop}}{2}$

22. If 2 polygons are \sim , then their corr. \measuredangle are \cong

height of actual tree
=
$$\frac{0.9}{18} = \frac{1}{20}$$

TEST PREP, PAGE 467

27. C

$$\frac{y}{14.4} = \frac{8.4}{4.8}$$

$$\frac{5}{2} = \frac{GL}{PS}$$

$$\frac{5}{2} = \frac{20}{PS}$$

$$\frac{5}{2} = \frac{20}{PS}$$

$$\frac{5}{2} = \frac{20}{PS}$$

$$\frac{5}{2} = 20(2) = 40$$

$$PS = 8$$

29. Ratios of sides are not the same: $\frac{12}{3.5} = \frac{24}{7}$, $\frac{10}{2.5} = 4$, $\frac{6}{1.5} = 4$

CHALLENGE AND EXTEND, PAGE 467

30.
$$\frac{\text{model length}}{\text{building length}} = \frac{1}{500}$$
$$\frac{\ell}{200} = \frac{1}{500}$$
$$500\ell = 200$$
$$\ell = 0.4 \text{ ft} = 4.8 \text{ in.}$$
$$\frac{\text{model width}}{\text{building width}} = \frac{1}{500}$$
$$\frac{W}{140} = \frac{1}{500}$$
$$500W = 140$$
$$W = 0.28 \text{ ft} = 3.36 \text{ in}$$

- **31.** Since $\overline{QR} \parallel \overline{ST}$, $\angle PQR \cong \angle PST$ and $\angle PRQ \cong \angle PTS$ by Alt. Int. \measuredangle Thm. $\angle P \cong \angle P$ by Reflex. Prop. of \cong . Thus corr. \measuredangle of $\triangle PQR$ and $\triangle PST$ are \cong . Since PS = 6 and PT = 8, $\frac{PQ}{PS} = \frac{PR}{PT} = \frac{QR}{ST} = \frac{1}{2}$. Therefore $\triangle PQR \sim \triangle PST$ by def. of \sim polygons.
- **32a.**By HL, $\triangle ABD \cong \triangle CBD$, so $\angle A \cong \angle C$, and $m \angle A = m \angle C = 45^{\circ}$. So $\triangle ABC$ is a 45°-45°-90° \triangle . $AC = AB\sqrt{2} = 1\sqrt{2} = \sqrt{2}$ $m \angle CBD = 90 - \angle C = 45^{\circ}$, so $\triangle CDB$ is also a $45^{\circ}-45^{\circ}-90^{\circ} \triangle$. So $BC = 1 = DC\sqrt{2} = DB\sqrt{2}$ $\sqrt{2} = 2DC = 2DB$ $DC = DB = \frac{\sqrt{2}}{2}$
- **b.** From part a., corr. \measuredangle of $\triangle ABC$ and $\triangle CDB$. $\frac{AB}{BD} = \frac{BC}{DC} = \frac{AC}{BC} = \sqrt{2}$. By def. of \sim , $\triangle ABC \sim \triangle CDB$.

33a. rect. ABCD ~ rect. BCFE

b.
$$\frac{\ell}{1} = \frac{1}{\ell - 1}$$

c. $\ell(\ell - 1) = 1$
 $\ell^2 - \ell = 1$
 $\ell^2 - \ell - 1 = 0$
 $\ell = \frac{1 \pm \sqrt{1^2 - 4(1)(-1)}}{2}$
 $= \frac{1 \pm \sqrt{5}}{2}$

Think: $\ell > 0$, so take positive sq. root. $\ell = \frac{1 + \sqrt{5}}{2}$

d.
$$\ell \approx 1.6$$

SPIRAL REVIEW, PAGE 467

- **34.** # of orders = # of permutations of 4 things = 4! = 24
- **35.** Think: Kite \rightarrow diags. are \perp . So $\angle QTR$ is a rt. \angle . m $\angle QTR = 90^{\circ}$
- **36.** Think: $\triangle PST \cong \triangle RST$. By CPCTC, $\angle PST \cong \angle RST$ $m \angle PST = m \angle RST = 20^{\circ}$
- **37.** Think: $\triangle PST$ is a rt. \triangle . So $\angle PST$ and $\angle TPS$ are comp.

 $\begin{array}{l} \textbf{39.} \quad \frac{x}{4} = \frac{y}{10} \\ 10x = 4y \\ \frac{10x}{y} = 4 \\ \frac{10}{y} = \frac{4}{x} \end{array}$

$$m\angle TPS = 90 - m\angle PST$$
$$= 90 - 20 = 70^{\circ}$$

 $\begin{array}{l} \textbf{38.} \quad \frac{x}{4} = \frac{y}{10} \\ 10x = 4y \end{array}$

40.
$$\frac{x}{4} = \frac{y}{10}$$

 $x = \frac{4y}{10}$
 $\frac{x}{y} = \frac{4}{10}$ or $\frac{2}{5}$

TECHNOLOGY LAB: PREDICT TRIANGLE SIMILARITY RELATIONSHIPS, PAGES 468–469

ACTIVITY 1, PAGE 468

3. The ratios of cor. side lengths are =.

TRY THIS, PAGE 468

- **1.** \triangle Sum Thm.
- **2.** Yes; in $\sim \triangle$, corr. sides are proportional.

ACTIVITY 2, PAGE 468

3. corr. \measuredangle are \cong .

TRY THIS, PAGE 469

- Yes; if 2 ▲ have their corr. sides in same ratio, then they are ~.
- 4. They are similar in that both allow you to conclude that corr. ▲ are ≅. They are different in that the conjecture suggests that ▲ with corr. sides in same ratio have same shape, but SSS ≅ Thm. allows you to conclude that the ▲ have both same shape and same size.

ACTIVITY 3, PAGE 469

- **3.** The ratio of the corr. sides of △*ABC* and △*DEF* are proportional.
- **4.** The corr. \measuredangle of the \oiint are \cong .

TRY THIS, PAGE 469

- 5. Yes; corr. sides are proportional and corr. \measuredangle are \cong .
- 6. If ▲ have 2 pairs of corr. sides in same proportion and included ▲ are ≃, then ▲ are ~. This is related to the SAS ≃ Thm.

7-3 TRIANGLE SIMILARITY: AA, SSS, AND SAS, PAGES 470–477

CHECK IT OUT! PAGES 470-473

- By △ Sum Thm., m∠C = 47°, so ∠C ≅ ∠F. ∠B ≅ ∠E by Rt. ∠ ≅ Thm. Therefore △ABC ~ △DEF by AA ~.
- 2. $\angle TXU \cong \angle VXW$ by Vert. \measuredangle Thm. $\frac{TX}{VX} = \frac{12}{16} = \frac{3}{4}, \frac{XU}{XW} = \frac{15}{20} = \frac{3}{4}$ Therefore $\triangle TXU \sim \triangle VXW$ by SAS \sim .
- 3. Step 1 Prove & are \sim . It is given that $\angle RSV \cong \angle T$. By the Reflex. Prop. of $\cong, \angle R \cong \angle R$. Therefore $\triangle RSV \sim \triangle RTU$ by AA \sim . Step 2 Find *RT*. $\frac{RT}{RS} = \frac{TU}{SV}$ $\frac{RT}{10} = \frac{12}{8}$ 8RT = 10(12) = 120RT = 15

4.
Statements Reasons
1.
$$M$$
 is mdpt. of \overline{JK} , N is mdpt.
of \overline{KL} , and P is mdpt. of \overline{JL} .
2. $MP = \frac{1}{2}KL$, $MN = \frac{1}{2}JL$,
 $NP = \frac{1}{2}KJ$
3. $\frac{MP}{KL} = \frac{MN}{JL} = \frac{NP}{KJ} = \frac{1}{2}$
4. $\triangle JKL \sim \triangle NPM$
5. $\frac{FG}{AC} = \frac{BF}{AB}$
 $\frac{FG}{5x} = \frac{4}{4x}$
 $FG(4x) = 4(5x)$
 $4FG = 20$
 $FG = 5$

THINK AND DISCUSS, PAGE 473

1. $\angle A \cong \angle D$ or $\angle C \cong \angle F$ **2.** $\frac{BA}{ED} = \frac{3}{5}$

 No; corr. sides need to be proportional but not necessarily ≅ for ▲ to be ~.

EXERCISES, PAGES 474-477

GUIDED PRACTICE, PAGE 474

- By def. of ∠ ≃, ∠C ≃ ∠H. By △ Sum Thm., m∠A = 47°, so ∠A ≃ ∠F. Therefore △ABC ~ △FGH by AA ~.
- **2.** $\angle P \cong \angle T$ (given). $\angle QST$ is a rt. \angle by the Lin. Pair Thm., so $\angle QST \cong \angle RSP$. Therefore $\triangle QST \sim \triangle RSP$ by AA ~.
- **3.** $\frac{DE}{JK} = \frac{8}{16} = \frac{1}{2}, \frac{DF}{JL} = \frac{6}{12} = \frac{1}{2}, \frac{EF}{KL} = \frac{10}{20} = \frac{1}{2}$ Therefore $\triangle DEF \sim \triangle JKL$ by SSS ~.
- 4. $\angle NMP \cong \angle RMQ$ (given) $\frac{MN}{MR} = \frac{4}{6} = \frac{2}{3}, \frac{MP}{MQ} = \frac{8}{4+8} = \frac{8}{12} = \frac{2}{3}$ Therefore $\triangle MNP \sim \triangle MRQ$ by SAS ~.

- **5.** Step 1 Prove \triangle are \sim . It is given that $\angle C \cong \angle E$. $\angle A \cong \angle A$ by Reflex. Prop. of \cong . Therefore $\triangle AED \cong \triangle ACB$ by AA \sim .
 - Step 2 Find AB. $\frac{AB}{AD} = \frac{BC}{DE}$ $\frac{AB}{AB} = \frac{15}{2}$
 - $rac{6}{6} = rac{9}{9}$ 9AB = 15(6) = 90
 - *AB* = 10
- 6. Step 1 Prove \triangle are \sim . Since $UV \parallel \overline{XY}$, by Alt. Int. \triangle Thm., $\angle U \cong \angle Y$ and $\angle V \cong \angle X$. Therefore $\triangle UVW \sim \triangle YXW$ by AA \sim . Step 2 Find WY. $\frac{WY}{WU} = \frac{WX}{WV}$ $\frac{WY}{9} = \frac{8.75}{7}$ 7WY = 9(8.75) = 78.75WY = 11.25
- 7.StatementsReasons $1. \overline{MN} \parallel \overline{KL}$ 1. Given $2. \angle JMN \cong \angle JKL, \angle JNM \cong \angle JLK$ $2. \text{ Corr. } \pounds \text{ Post.}$ $3. \bigtriangleup JMN \sim \bigtriangleup JKL$ $3. \text{ AA} \sim Step 2$

8.	Statements	Reasons
	1. $SQ = 2QP$, $TR = 2RP$	1. Given
	2. SP = SQ + QP,	2. Seg. Add. Post.
	TP = TR + RP	
	3. SP = 2QP + QP,	3. Subst.
	TP = 2RP + RP	
	4. $SP = 3QP$, $TP = 3RP$	4. Seg. Add. Post.
	$5. \frac{SP}{QP} = 3, \frac{TP}{RP} = 3$	5. Div. Prop. of $=$
	6. $\angle P \cong \angle P$	6. Reflex. Prop. of \cong
	7. $\triangle PQR \sim \triangle PST$	7. SAS ~ <i>Steps 5, 6</i>

9. SAS or SSS ~ Thm.

10. Step 1 Prove \triangle are \sim . $\angle S \cong \angle S$ by Reflex. Prop. of \cong $\frac{SA}{SC} = \frac{733 + 586}{586} \approx 2.25, \frac{SB}{SD} = \frac{800 + 644}{644} \approx 2.24$ Therefore $\triangle SAB \sim \triangle SCD$ by SAS \sim . Step 2 Find AB. $\frac{AB}{CD} = \frac{SA}{SC}$ $\frac{AB}{533} \approx 2.25$ $AB \approx 2.25(533)$ $\approx 1200 \text{ m or } 1.2 \text{ km}$

PRACTICE AND PROBLEM SOLVING, PAGES 475-476

- **11.** $\angle G \cong \angle G$ by Reflex. Prop. of \cong . $\angle GLH \cong \angle K$ by Rt. $\angle \cong$ Thm. Therefore $\triangle HLG \sim \triangle JKG$ by AA ~.
- **12.** By Isosc. \triangle Thm., $\angle B \cong \angle C$ and $\angle E \cong \angle F$. By \triangle Sum Thm..

 $32 + 2m\angle B = 180$ $2m\angle B = 148^{\circ}$ $m\angle B = 74^{\circ}$ By def. of $\cong \measuredangle, \angle B \cong \angle E$ and $\angle C \cong \angle F$. Therefore $\triangle ABC \sim \triangle DEF$ by AA \sim .

	$\angle K \cong \angle K$ by Reflex. Prop. of $\frac{KL}{KN} = \frac{6}{4} = \frac{3}{2}, \frac{KM}{KL} = \frac{5+4}{6}$ Therefore $\triangle KLM \sim \triangle KNL$	-=	<u>3</u> 2			
14.	Therefore $\triangle KLM \sim \triangle KNL$ by SAS ~. 14. $\frac{UV}{XY} = \frac{VW}{YZ} = \frac{WU}{ZX} = \frac{4}{5.5} = \frac{8}{11}$ Therefore $\triangle UVW \sim \triangle XYZ$ by SSS ~					
15.	Therefore $\triangle UVW \sim \triangle XYZ$ by SSS ~. 15. Step 1 Prove \triangle are ~. It is given that $\angle ABD \cong \angle C$. $\angle A \cong \angle A$ by Reflex. Prop. of \cong . Therefore $\triangle ABD \cong \triangle ACB$ by AA ~. Step 2 Find AB. $\frac{AB}{AD} = \frac{AC}{AB}$ $\frac{AB}{4} = \frac{4 + 12}{AB}$ $AB^2 = 4(16) = 64$					
$AB = +\sqrt{64} = 8$ 16. Step 1 Prove \triangle are \sim . Since $\overline{ST} \parallel \overline{VW}, \angle PST \cong \angle V$ by Corr. \triangle Post. $\angle P$ $\cong \angle P$ by Reflex. Prop. of \cong . Therefore $\triangle PST \sim$ $\triangle PVW$ by AA \sim . Step 2 Find PS. $\frac{PS}{PV} = \frac{ST}{VW}$ $\frac{PS}{PS + 6} = \frac{10}{17.5} = \frac{4}{7}$ 7PS = 4(PS + 6) 7PS = 4PS + 24 3PS = 24						
	7PS = 4PS + 24					
17.	7PS = 4PS + 24 $3PS = 24$		Reasons			
17.	7PS = 4PS + 24 $3PS = 24$ $PS = 8$ Statements 1. CD = 3AC, CE = 3BC		Reasons 1. Given			
17.	7PS = 4PS + 24 $3PS = 24$ $PS = 8$ Statements 1. CD = 3AC, CE = 3BC					
17.	7PS = 4PS + 24 $3PS = 24$ $PS = 8$ Statements		1. Given			
17.	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. CD = 3AC, CE = 3BC 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$		1. Given 2. Div. Prop. of ≅			
17.	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$		1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{BC} = \frac{QR}{BC}$		 Given Div. Prop. of ≅ Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$	1.	1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{BC} = \frac{QR}{BC}$	1.	 Given Div. Prop. of ≅ Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$ 2. $\angle R \cong \angle R$	1. 2. 3.	1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$ 2. $\angle R \cong \angle R$ 3. $\triangle PQR \sim \triangle MNR$	1. 2. 3.	1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$ 2. $\angle R \cong \angle R$ 3. $\triangle PQR \sim \triangle MNR$	1. 2. 3.	1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$ 2. $\angle R \cong \angle R$ 3. $\triangle PQR \sim \triangle MNR$	1. 2. 3.	1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$ 2. $\angle R \cong \angle R$ 3. $\triangle PQR \sim \triangle MNR$	1. 2. 3.	1. Given 2. Div. Prop. of ≅ 3. Vert.			
	$7PS = 4PS + 24$ $3PS = 24$ $PS = 8$ Statements 1. $CD = 3AC, CE = 3BC$ 2. $\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$ 3. $\angle ACB \cong \angle DCE$ 4. $\triangle ABC \sim \triangle DEC$ Statements 1. $\frac{PR}{MR} = \frac{QR}{NR}$ 2. $\angle R \cong \angle R$ 3. $\triangle PQR \sim \triangle MNR$	1. 2. 3.	1. Given 2. Div. Prop. of ≅ 3. Vert.			

Pyramid A: $\frac{12}{10} = \frac{6}{5}$; Pyramid B: $\frac{9}{7.2} = \frac{5}{4}$; Pyramid C: $\frac{9.6}{8} = \frac{6}{5}$ Since slant edges of each pyramid are \cong , Pyramids A and C are \sim by SSS \sim . Lengths are =.

b.
$$\frac{\text{base of A}}{\text{base of C}} = \frac{10}{8} = \frac{5}{4}$$

.

26. Possible answer: Yes; If corr. \measuredangle are \cong and corr. sides are prop., $\triangle ABC \sim \triangle XYZ$.

27. Think: Since all horiz. lines are \parallel , 3 \triangleq with horiz. bases are ~ by AA ~. $\frac{JK}{6} = \frac{3}{9} \qquad \qquad \frac{MN}{6} = \frac{6}{9}$

 $\overline{6} = \overline{9}$ $\overline{6} = \overline{9}$

 9JK = 6(3) = 18 9MN = 6(6) = 36

 JK = 2 ft
 MN = 4 ft

- **28.** Since $\triangle ABC \sim \triangle DEF$, by def. of $\sim \triangle$, $\angle A \cong \angle D$ and $\angle B \cong \angle E$. Similarly, since $\triangle DEF \sim \triangle XYZ$, $\angle D \cong \angle X$ and $\angle E \cong \angle Y$. Thus by Trans. Prop. of \cong , $\angle A \cong \angle X$ and $\angle B \cong \angle Y$. So $\triangle ABC \sim \triangle XYZ$ by AA \sim .
- 29. Possible answer:

- 30. Since △KNJ is isosc. with vertex ∠N, KN ≅ JN by def. of an isosc. △. ∠NKJ ≅ ∠NJK by Isosc. △ Thm. It is given that ∠H ≅ ∠L, so △GHJ ≅ △MLK by AA ~.
- **31a.** The \triangle are \sim by AA \sim if you assume that camera is \parallel to hurricane (that is, $\overline{YX} \parallel \overline{AB}$).
 - **b.** \triangle *YWZ* ~ \triangle *BCZ* and \triangle *XWZ* ~ \triangle *ACZ*, also by AA ~.
 - c. $\frac{XW}{AC} = \frac{WZ}{ZC} = \frac{50}{150}$ 150XW = 50AC $\frac{YW}{BC} = \frac{WZ}{ZC} = \frac{50}{150}$ 150YW = 50BC 150XW + 150YW = 50AC + 50BC 150XY = 50AB 50AB = 150(35) = 5250 AB = 105 mi

32. Solution B is incorrect. The proportion should be $\frac{8}{10} = \frac{8+y}{14}.$

33. Let measure of vertex \measuredangle be x° . Then by Isosc. \triangle Thm., base \measuredangle in each \triangle must measure $\left(\frac{180 - x}{2}\right)^{\circ}$. So \measuredangle are \sim by AA \sim .

TEST PREP, PAGE 477

34. C

$$\frac{TU}{PQ} = \frac{UV}{QR}$$

$$\frac{TU}{60} = \frac{60 + 20}{40 + 60} = \frac{4}{5}$$

$$\frac{GH}{CD} = \frac{10.5}{42} = \frac{1}{4}$$

$$\frac{GH}{CD} = \frac{14.5}{58} = \frac{1}{4}$$

$$TU = 48$$

36. C

Rects. ~ $\rightarrow \overline{BC} \sim \overline{FG}$, $\angle C \sim \angle G$, and $\overline{CD} \sim \overline{GH}$, which are conditions for SAS ~.

37. 30

$$\frac{x}{12} = \frac{20}{8}$$

$$8x = 12(20) = 240$$

$$x = 30$$

CHALLENGE AND EXTEND, PAGE 477

- **38.** Assume that AB < DE and choose X on \overline{DE} so that $\overline{AB} \cong \overline{DX}$. Then choose Y on \overline{DF} so that $\overrightarrow{XY} \parallel \overline{EF}$. By Corr. \measuredangle Post., $\angle DXY \cong \angle DEF$ and $\angle DYX \cong$ $\angle DFE$. Therefore $\triangle DXY \sim \triangle DEF$ by AA ~. By def. of $\sim \spadesuit, \frac{DX}{DE} = \frac{XY}{EF} = \frac{DY}{DF}$. By def. of $\cong, AB = DX$. So $\frac{AB}{DE} = \frac{XY}{EF}$. It is given that $\frac{AB}{DE} = \frac{BC}{EF}$, so XY = BC. $\overline{XY} \cong \overline{BC}$ by def. of \cong . Similarly, $\overline{DY} \cong \overline{AC}$, so $\triangle ABC \cong \triangle DXY$ by SSS \cong Thm. It follows that $\triangle ABC \sim \triangle DXY$. Then by Trans. Prop. of ~, $\triangle ABC \sim \triangle DEF$. **39.** Assume that AB < DE and choose X on \overline{DE} so that
- *XE* ≅ *AB*. Then choose *Y* on *EF* so that *XY* || *DF*. ∠*EXY* ≅ ∠*EDF* by Corr. ▲ Post., ∠*E* ≅ ∠*E* by Reflex. Prop. of ≅. Therefore $\triangle XEY \sim \triangle DEF$ by AA ~. By def. of ~ ▲, $\frac{XE}{DE} = \frac{EY}{EF}$. It is given that $\frac{AB}{DE} = \frac{BC}{EF}$. By def. of ≅, *XE* = *AB*, so $\frac{XE}{DF} = \frac{BC}{EF}$. Thus by def. of ≅, *BC* = *EY* and so $\overline{BC} \cong \overline{EY}$. It is also given that ∠*B* ≅ ∠*E*, so $\triangle ABC \cong \triangle XEY$ by SAS ≅ Thm. It follows that $\triangle ABC \sim \triangle XEY$. Then by Trans. Prop. of ~, $\triangle ABC \sim \triangle DEF$.

40. Think: Use
$$\triangle$$
 Sum Thm. and def. of \sim .
 $m \angle X + m \angle Y + m \angle Z = 180$
 $2x + 5y + 102 - x + 5x + y = 180$
 $6x + 6y = 78$
 $x + y = 13$
 $y = 13 - x$
Think: Use def. of \sim .
 $\angle A \cong \angle X$
 $m \angle A = m \angle X$
 $50 = 2x + 5y$
 $50 = 2x + 5y$
 $50 = 2x + 5y$
 $50 = 65 - 3x$
 $3x = 15$
 $x = 5$
 $y = 13 - 5 = 8$
 $m \angle Z = 5(5) + 8 = 33^{\circ}$

SPIRAL REVIEW, PAGE 477

- **41.** $100 = \frac{96 + 99 + 105 + 105 + 94 + 107 + x}{700 = 606 + x}$ x = 94
- **42.** Possible answer: (0, 4), (0, 0), (2, 0)
- **43.** Possible answer: (0, *k*), (2*k*, *k*), (2*k*, 0), (0, 0)

44.
$$\frac{2x}{10} = \frac{35}{25}$$

 $25(2x) = 10(35)$
 $50x = 350$
 $x = 7$
45. $\frac{5y}{450} = \frac{25}{10y}$
 $5y(10y) = 450(25)$
 $50y^2 = 11,250$
 $y^2 = 225$
 $y = \pm 15$
46. $\frac{b-5}{28} = \frac{7}{b-5}$
 $(b-5)^2 = 28(7) = 196$
 $b-5 = \pm 14$
 $b = 5 \pm 14 = 19 \text{ or } -9$

7A MULTI-STEP TEST PREP, PAGE 478

1.
$$\frac{\text{height of model}}{\text{height of real engine}} = \frac{1}{87}$$

$$\frac{2.5}{x} = \frac{1}{87}$$

$$2.5(87) = x$$

$$x = 217.5 \text{ in.} \approx 18 \text{ ft}$$
2.
$$\frac{\text{height of model}}{\text{height of real station}} = \frac{1}{87}$$

$$\frac{y}{20} = \frac{1}{87}$$

$$87y = 20$$

$$y \approx 0.23 \text{ ft} \approx 2\frac{3}{4} \text{ in.}$$
3.
$$\frac{\text{height of model}}{\text{height of actual restaurant}} = \frac{1}{87}$$

$$\frac{z}{24} = \frac{1}{87}$$

$$87z = 24$$

$$z \approx 0.28 \text{ ft} \approx 3 \text{ in.}$$

4.
$$\frac{\text{base of B}}{\text{base of G}} = \frac{8}{14} = \frac{5}{7}; \frac{\text{slant of B}}{\text{slant of G}} = \frac{6}{10} = \frac{3}{5}; \text{ not } \sim \frac{\text{base of G}}{\text{base of H}} = \frac{14}{6} = \frac{7}{3}; \frac{\text{slant of G}}{\text{slant of H}} = \frac{10}{4.5} = \frac{20}{9}; \text{ not } \sim \frac{\text{base of B}}{\text{base of H}} = \frac{8}{6} = \frac{4}{3}; \frac{\text{slant of B}}{\text{slant of H}} = \frac{6}{4.5} = \frac{4}{3}; \sim \frac{\text{Bank's and hotel's roofs are } \sim, \text{ by SSS } \sim.$$

READY TO GO ON? PAGE 479

1. slope
$$= \frac{-1+2}{4+1} = \frac{1}{5}$$

2. slope $= \frac{-3-3}{2+1}$
 $= \frac{-6}{3} = \frac{-2}{1}$
3. slope $= \frac{1-3}{4+4} = \frac{-2}{8}$
 $= \frac{-1}{4}$
4. slope $= 0$
 $= \frac{-1}{4}$
5. $\frac{y}{6} = \frac{12}{9}$
 $9y = 6(12) = 72$
 $y = 8$
6. $\frac{16}{24} = \frac{20}{t}$
 $16t = 24(20) = 480$
 $t = 30$
7. $\frac{x-2}{4} = \frac{9}{x-2}$
 $(x-2)^2 = 4(9) = 36$
 $x-2 = \pm 6$
 $= -4 \text{ or } 8$
8. $\frac{2}{3y} = \frac{y}{24}$
 $2(24) = 3y(y)$
 $48 = 3y^2$
 $16 = y^2$
 $y = \pm 4$

9.
$$\frac{\text{length of building}}{\text{length of model}} = \frac{\text{width of building}}{\text{width of model}}$$
$$\frac{\ell}{1.4} = \frac{240}{0.8}$$
$$0.8\ell = 1.4(240) = 336$$
$$\ell = 420 \text{ m}$$
10.
$$\frac{AB}{WX} = \frac{64}{96} = \frac{2}{3}; \frac{AD}{WZ} = \frac{30}{50} = \frac{3}{5}; \text{ no}$$
11. By def. of comp. \measuredangle , $m \angle M = 23^{\circ}$ and $m \angle K =$

- **11.** By def. of comp. \measuredangle , $m \angle M = 23^{\circ}$ and $m \angle K = 67^{\circ}$; so $\angle J \cong \angle N$, $\angle M \cong \angle P$, and $\angle R \cong \angle K$; $\frac{JM}{NP} = \frac{24}{36} = \frac{2}{3}$; $\frac{MR}{PK} = \frac{26}{39} = \frac{2}{3}$; $\frac{JR}{NK} = \frac{10}{15} = \frac{2}{3}$ yes; $\frac{2}{3}$; $\triangle JMR \sim \triangle NPK$
- 12. Think: Assume magnet ~ portrait. $\frac{\text{length of magnet}}{\text{length of portrait}} = \frac{\text{width of magnet}}{\text{width of portrait}}$ $\frac{\ell}{30} = \frac{3.5}{21}$ $21\ell = 30(3.5) = 105$ $\ell = 5 \text{ cm}$

13.	Statements	Reasons
	1. <i>ABCD</i> is a □.	1. Given
	2. AD BC	2. Def. of 🗖
	3. ∠EDG ≅ ∠FBG	3. Alt. Int. 🔬 Thm.
	4. ∠EGD \cong ∠FGB	4. Vert. 🛦 Thm.
	5. $\triangle EDG \sim \triangle FBG$	5. AA ~ Steps 3, 4

14.	Statements	Reasons
	1. $MQ = \frac{1}{3}MN, MR = \frac{1}{3}MP$	1. Given
	$2. \frac{MQ}{MN} = \frac{1}{3}, \frac{MR}{MP} = \frac{1}{3}$	2. Div. Prop. of =
	3. $\frac{MQ}{MN} = \frac{MR}{MP}$	3. Trans. Prop. of $=$
	4. $\angle M \cong \angle M$	4. Reflex. Prop. of \cong
	5. $\triangle MQR \sim \triangle MNP$	5. SAS ~ Steps 3, 4

15. Think: $\triangle XYZ \sim \triangle VUZ$ with ratio of proportion $\frac{5}{2}$, by SAS \sim . $\frac{XY}{UV} = \frac{5}{2}$ 2XY = 5UV2XY = 5(16) = 80

XY = 40 ft

TECHNOLOGY LAB: INVESTIGATE ANGLE BISECTORS OF A TRIANGLE, PAGE 480

TRY THIS, PAGE 480

1.
$$\frac{BD}{AB} = \frac{CD}{AC}$$
 or $\frac{BD}{CD} = \frac{AB}{AC}$
2. $\frac{BD}{CD} = \frac{AB}{AC}$ or $\frac{BD}{AB} = \frac{CD}{AC}$

ACTIVITY 2:

2. Check students' work.

3.
$$\frac{DI}{DG} = \frac{DE + DF}{\text{perimeter } \triangle DEF}$$

4. $\frac{DI}{DG} = \frac{DE + DF}{DE + DF + EF}$; the length of the seg. from the vertex of the bisected \angle to the incenter divided by the length of the seg. from the vertex to the opp. side is = to the sum of the sides of the bisected \angle divided by the perimeter of the \triangle .

TRY THIS, PAGE 480

- 3. Check students' work.
- 4. Check students' work.

7-4 APPLYING PROPERTIES OF SIMILAR TRIANGLES, PAGES 481–487

CHECK IT OUT! PAGES 482–483 1. It is given that $\overline{PQ} \parallel \overline{LM}$, so $\frac{PL}{PN} = \frac{QM}{QN}$ by \triangle Prop. Thm. $\frac{3}{PN} = \frac{2}{5}$ 15 = 2PN PN = 7.52. AD = 36 - 20 = 16 and BE = 27 - 15 = 12, so $\frac{DC}{AD} = \frac{20}{16} = \frac{5}{4}$ $\frac{EC}{BE} = \frac{15}{12} = \frac{5}{4}$ Since $\frac{DC}{AD} = \frac{EC}{BE}$, $\overline{DE} \parallel \overline{AB}$ by Conv. of \triangle Prop. Thm. 3. $\overline{AK} \parallel \overline{BL} \parallel \overline{CM} \parallel \overline{DN}$ $\frac{KL}{LM} = \frac{AB}{BC}$ 2.4(LM) = 2.6(1.4) $LM \approx 1.5$ cm $\frac{2.6}{MN} = \frac{2.4}{CD}$ $\frac{KL}{MN} = \frac{AB}{CD}$ $\frac{2.4(MN)}{2.2} = 2.6(2.2)$ $MN \approx 2.4$ cm $DC = \frac{Y}{2} = \frac{18}{2} = 9$

THINK AND DISCUSS, PAGE 484

1. Possible answer:
$$\frac{AX}{XB} = \frac{AY}{YC}; \frac{AX}{AB} = \frac{XY}{BC}; \frac{AY}{AC} = \frac{XY}{BC};$$

EXERCISES, PAGES 484–487 GUIDED PRACTICE, PAGES 484–485

- **1.** It is given that $\overline{CD} \parallel \overline{FG}$, so $\frac{CE}{CF} = \frac{DE}{DG}$ by \triangle Prop. Thm. $\frac{32}{24} = \frac{40}{DG}$ 32DG = 960DG = 30
- 2. It is given that $\overline{QR} \parallel \overline{PN}$, so $\frac{QM}{QP} = \frac{RM}{RN}$ by \triangle Prop. Thm. $\frac{8}{5} = \frac{10}{RN}$ 8RN = 50RN = 6.25
- **3.** $\frac{EC}{AC} = \frac{1.5}{1.5} = 1; \frac{ED}{DB} = \frac{1.5}{1.5} = 1$ Since $\frac{EC}{AC} = \frac{ED}{DB}, \overline{AB} \parallel \overline{CD}$ by Conv. of \triangle Prop. Thm.
- 4. $\frac{VU}{US} = \frac{67.5}{54} = \frac{5}{4}; \quad \frac{VT}{TR} = \frac{90}{72} = \frac{5}{4}$ Since $\frac{VU}{US} = \frac{VT}{TR}, \quad \overline{TU} \parallel \overline{RS}$ by Conv. of \bigtriangleup Prop. Thm.
- 5. Let ℓ represent length of Broadway between 34th and 35th Streets.

$$\frac{\ell}{275} = \frac{250}{240} \\ 240\ell = 275(250) \\ \ell \approx 286 \text{ ft}$$

6.
$$\frac{QR}{RS} = \frac{PQ}{PS}$$
 by $\triangle \angle$ Bis. Thm.
 $\frac{x-2}{x+1} = \frac{12}{16}$
 $16(x-2) = 12(x+1)$
 $16x - 32 = 12x + 12$
 $4x = 44$
 $x = 11$
 $QR = 11 - 2 = 9; RS = 11 + 1 = 1$

12

7.
$$\frac{BC}{CD} = \frac{AB}{AD}$$
 by $\triangle \angle$ Bis. Thm.
 $\frac{6}{y-1} = \frac{9}{2y-4}$
 $6(2y-4) = 9(y-1)$
 $12y-24 = 9y-9$
 $3y = 15$
 $y = 5$
 $CD = 5 - 1 = 4$; $AD = 2(5) - 4 = 6$

PRACTICE AND PROBLEM SOLVING, PAGES 485-486

8.
$$\frac{GJ}{JL} = \frac{HK}{KL}$$

 $\frac{6}{4} = \frac{8}{KL}$
 $6KL = 32$
 $KL = 5\frac{1}{3}$
9. $\frac{XY}{YU} = \frac{XZ}{ZV}$
 $\frac{30 - 18}{18} = \frac{XZ}{30}$
 $6KL = 32$
 $12(30) = 18XZ$
 $KL = 5\frac{1}{3}$
 $XZ = 20$
10. $\frac{EC}{CA} = \frac{12}{4} = 3, \frac{ED}{DB} = \frac{14}{4\frac{2}{3}} = \frac{42}{14} = 3$
So $\overline{AB} \parallel \overline{CD}$ by Conv. of \triangle Prop. Thm.
11. $\frac{PM}{MQ} = \frac{9 - 2.7}{2.7} = 2\frac{1}{3}, \frac{PN}{NR} = \frac{10 - 3}{3} = 2\frac{1}{3}$
So $\overline{MN} \parallel \overline{QR}$ by Conv. of \triangle Prop. Thm.
12. $\frac{LM}{GL} = \frac{HJ}{GH}$
 $\frac{LM}{11.3} = \frac{2.6}{10.4}$
 $\frac{LM}{11.3} = \frac{2.6}{10.4}$
 $LM = \frac{2.6}{10.4}(11.3)$
 $x = 2.83$ ft
13. $\frac{BC}{CD} = \frac{AB}{AD}$
 $\frac{Z - 4}{\frac{Z}{2}} = \frac{12}{10}$
 $10(z - 4) = \frac{Z}{2}(12)$
 $10z - 40 = 6z$
 $4z = 40$
 $z = 10$
 $BC = 10 - 4 = 6; CD = \frac{10}{2} = 5$
14. $\frac{TU}{UV} = \frac{ST}{SV}$
 $\frac{2y}{14.4} = \frac{4y - 2}{24}$
 $24(2y) = 14.4(4y - 2)$

$$48y = 57.6y - 28.8$$

$$28.8 = 9.6y$$

$$y = 3$$

$$ST = 4(3) - 2 = 10; TU = 2(3) = 6$$

$$15. \frac{AB}{BD} = \frac{AC}{CE}$$

$$16. \frac{AD}{DF} = \frac{AE}{EG}$$

$$17. \frac{DF}{BD} = \frac{EG}{CE}$$

$$18. \frac{AF}{AB} = \frac{AG}{AC}$$

$$19. \frac{BD}{CE} = \frac{DF}{EG}$$

$$20. \frac{AB}{AC} = \frac{BF}{CG}$$

21. Let x represent length of 3rd side.
either

$$\frac{x}{20} = \frac{12}{16}$$

$$\frac{x}{20} = \frac{16}{12}$$

$$16x = 240$$

$$x = 15 \text{ in.}$$

$$x = \frac{80}{3} = 26\frac{2}{3} \text{ in.}$$
22a. $\frac{AC}{BD} = \frac{CE}{DF}$
b. $\frac{81.6}{80} = \frac{CE}{70}$

$$81.6(70) = 80CE$$

$$CE = 71.4 \text{ cm}$$
c. $\frac{AJ}{BK} = \frac{AC}{BD}$

$$\frac{AJ}{80 + 70 + 60 + 40} = \frac{81.6}{80}$$

$$AJ = \frac{81.6}{80}(250) = 255 \text{ cm}$$
23. $\boxed{\frac{\text{Statements}}{1.\frac{AE}{BD} + \frac{AF}{FC}}{RC}}$

$$\frac{1. \frac{AE}{BD} = \frac{AF}{FC}}{AJ} = \frac{1}{6} \text{ Given}$$

$$2. AAEF \sim AABC$$

$$3. \Delta AEF \sim AABC$$

$$3. \Delta AEF \sim AABC$$

$$4. Def. of \sim \Delta$$

$$5. \overline{EF} \parallel \overline{BC}$$

$$1. \text{ Given}$$

$$2. 2 \text{ pts. determine}$$

$$\frac{1. \frac{AB}{B} \parallel \overline{CD}, \overline{CD} \parallel \overline{EF}}{5. \text{ Conv. of Corr. } \underline{A} \text{ Post.}$$
24. $\boxed{\frac{\text{Statements}}{RT} = \frac{BE}{BD}}$

$$3. \Delta P \text{ rop. Thm.}$$

$$4. \frac{BX}{XE} = \frac{BD}{DF}$$

$$5. \frac{AC}{CE} = \frac{BD}{DF}$$

$$5. \frac{AC}{CE} = \frac{BD}{DF}$$

$$5. \frac{AC}{CE} = \frac{BD}{DF}$$

$$5. \frac{AC}{CE} = \frac{BD}{BF}$$

$$5. \frac{AC}{RT} = \frac{OS}{SU}$$

$$\frac{x^{2} - 4x = x^{2} + 2x}{x^{2} - 2} = \frac{x}{x(x - 2)}$$

$$\frac{A}{x(x - 6) = 0}$$

$$x(x - 6) = 0$$

$$x(x - 6) = 0$$

$$x(x - 6) = 0$$

$$x = 6 (since x > 0)$$

$$PR = 6; RT = 6 + 2 = 8; QS = \frac{6}{2} = 3;$$

$$SU = 6 - 2 = 4$$
b. $\frac{PR}{RT} = \frac{QS}{SU} \text{ of } \frac{6}{8} = \frac{3}{4}$
26. Think: Use Δ Prop. Thm. and $\Delta \angle$ Bis. Thm.

$$\frac{EF}{BC} = \frac{CD}{BC} = \frac{AD}{BB}$$

$$\frac{EF}{10} = \frac{24}{18} = \frac{4}{3}$$

$$3EF = 40$$

$$EF = 13\frac{1}{3}$$

27.
$$\frac{ST}{TQ} = \frac{SR}{RQ} = \frac{PN}{NM}$$
$$\frac{ST}{10} = \frac{6}{4}$$
$$4ST = 60$$
$$ST = 15$$

28. Total length along Chavez St. is
$$150 + 200 + 75 = 425 \text{ ft.}$$
$$\frac{x}{150} = \frac{500}{425} = \frac{20}{17}$$
$$17x = 150(20) = 3000$$
$$x \approx 176 \text{ ft}$$

$$1/x = 150(20) = x \approx 176 \text{ ft}$$

$$\frac{y}{200} = \frac{500}{425} = \frac{20}{17}$$

$$17y = 4000$$

$$y \approx 235 \text{ ft}$$

$$\frac{z}{75} = \frac{500}{425} = \frac{20}{17}$$

$$17z = 1500$$

$$z = 88 \text{ ft}$$

- 29. Draw a seg. on tracing paper whose length is = to the vert. dist. from line 1 to line 6 or no greater than the diag. dist. from line 1 to line 6 of the notebook paper. Place the tracing paper over the notebook paper so that the seg. spans exactly 6 of the lines on the notebook paper. Then mark the spots where the tracing-paper seg. crosses the line on the notebook paper. The method works by the 2-Transv. Proportionality Corollary.
- **30.** Think: Use \triangle Prop. Thm. First find *EX*.

$$\frac{EX}{AX} = \frac{EY}{DY}$$

$$\frac{EX}{17} = \frac{16}{18}$$

$$18EX = 272$$

$$EX = 15\frac{1}{9}$$

$$AE = AX + XE$$

$$= 17 + 15\frac{1}{9} = 32\frac{1}{9}$$

$$\frac{EC}{AE} = \frac{DB}{AD}$$

$$\frac{EC}{32^{1}/9} = \frac{7.5}{15} = \frac{1}{2}$$

$$2EC = 32\frac{1}{9}$$

$$EC = 16\frac{1}{18}$$

31. Possible answer: $\frac{BD}{CD} = \frac{AB}{AC}$; $\Delta \angle$ Bis. Thm.

TEST PREP, PAGE 487

32. C $\frac{US}{SR} = \frac{20}{35} = \frac{4}{7}, \frac{VT}{TR} = \frac{16}{28} = \frac{4}{7}$ **33.** J 34. C $\frac{AB}{25} = \frac{16}{20}$ 20AB = 400Let x be dist. to 1st St. $\frac{x}{2.4} = \frac{2.1}{2.8} = \frac{3}{4}$ 4x = 7.2*AB* = 20 x = 1.8 mi x + 2.4 = 4.2 mi

35.
$$\frac{x}{24} = \frac{20}{16} = \frac{5}{4}$$

 $4x = 120$
 $x = 30$
 $\frac{y}{15} = \frac{16}{20} = \frac{4}{5}$
 $5y = 60$
 $y = 12$
possible answer: $\frac{20}{16} = \frac{15}{12}; \frac{20}{16} = \frac{30}{24}; \frac{15}{12} = \frac{30}{24};$
 $\frac{20 + 15}{30} = \frac{16 + 12}{24}; \frac{20}{15 + 30} = \frac{16}{12 + 24};$
 $\frac{20}{20 + 15 + 30} = \frac{16}{16 + 12 + 24}$

CHALLENGE AND EXTEND, PAGE 487

36.
$$P = AB + BC + AC$$
$$29 = AB + 9 + AC$$
$$20 - AB = AC$$
$$\frac{AB}{AC} = \frac{BD}{CD}$$
$$\frac{AB}{20 - AB} = \frac{4}{5}$$
$$5AB = 4(20 - AB)$$
$$9AB = 80$$
$$AB = 8\frac{8}{9}$$
$$AC = 20 - 8\frac{8}{9} = 11\frac{1}{9}$$

XY

37. Given: $\triangle ABC \sim \triangle XYZ$, \overline{AD} bisects $\angle BAC$, and \overline{XW} bisects $\angle YXZ$. **Prove:** $\frac{AD}{XW} = \frac{AB}{XY}$

BDCYWZStatementsReasons1.
$$\triangle ABC \sim \triangle XYZ$$
1. Given2. $\angle B \cong \angle Y$ 2. Def. of ~ polygons3. $m \angle BAC = m \angle YXZ$ 3. Def. of ~ polygons4. \overline{AD} bisects $\angle BAC$ and
 \overline{XW} bisects $\angle YXZ$.5. Def. of ~ bis.5. $m \angle BAC = 2m \angle BAD$,
 $m \angle YXZ = 2m \angle YXW$ 6. Trans. Prop. of =7. $m \angle BAD = m \angle YXW$ 6. Trans. Prop. of =8. $\triangle ABD \sim \triangle XYW$ 8. $\triangle A \sim Steps 2, 7$ 9. $\frac{AD}{XW} = \frac{AB}{XY}$ 9. \triangle Prop. Thm.

39. Possible answer: Check students' work.

SPIRAL REVIEW, PAGE 487

- **40.** 5 = 1 + 4, 6 = 2 + 4, ... *n*th term is n + 4
- **41.** $3 = 3(1), 6 = 3(2), \dots$ *n*th term is 3n
- **42.** $1 = 1^2$, $4 = 2^2$, $9 = 3^2$, ... *n*th term is n^2

43. Let C = (x, y). $3 = \frac{1+x}{2}$ $-7 = \frac{4+y}{2}$ 6 = 1+x -14 = 4+y x = 5 y = -18C = (5, -18)

- 44. $\angle A \cong \angle A$ (Reflex. Prop. of \cong) $\frac{AB}{AD} = \frac{8}{12} = \frac{2}{3}, \frac{AC}{AE} = \frac{6}{9} = \frac{2}{3}$ Therefore $\triangle ABC \sim \triangle ADE$ by SAS \sim .
- **45.** ∠*KLJ* ≅ ∠*NLM* (Vert. ▲ Thm.) ∠*K* ≅ ∠*N* (△ Sum Thm. → m∠*N* = 68°) Therefore △*JKL* ~ △*MNL* by AA ~.

7-5 USING PROPORTIONAL RELATIONSHIPS, PAGES 488-494

CHECK IT OUT! PAGES 488-490

1. Step 1 Convert measurements to inches. GH = 5 ft 6 in. = 5(12) in. + 6 in. = 66 in. JH = 5 ft = 5(12) in. = 60 in.NM = 14 ft 2 in. = 14(12) in. + 2 in. = 170 in. Step 2 Find $\sim \triangle$. Because sun's rays are $\parallel, \angle J \cong \angle N$. Therefore $\triangle GHJ \cong \triangle LMN$ by AA ~. Step 3 Find LM. <u>GH _ JH</u> LM NM <u>66 _ 60</u> LM 170 60LM = 66(170)LM = 187 in. = 15 ft 7 in. 2. Use a ruler to measure dist. between City Hall and El Centro College. Dist. is 4.5 cm.

To find actual dist. *y*, write a proportion comparing map dist. to actual dist.

$$\frac{4.5}{y} = \frac{1.5}{300}$$

1.5y = 4.5(300)
1.5y = 1350

$$y = 1000$$

 $y = 900$

Actual dist. is 900 m, or 0.9 km.

3. Step 1 Set up proportions to find length ℓ and width *w* of of scale drawing.

ℓ 1	w _ 1
74 - 20	$\frac{1}{60} - \frac{1}{20}$
$20\ell = 74$	20w = 60
$\ell = 3.7$ in.	w = 3 in.

Step 2 Use a ruler to draw a rect. with new dimensions. (Check students' work.)

4. Similarity ratio of $\triangle ABC$ to $\triangle DEF$ is $\frac{4}{12}$, or $\frac{1}{3}$. By Proportional Perimeters and Areas Thm., ratio

of \triangle ' perimeters is also $\frac{1}{3}$, and ratio of \triangle ' areas

is
$$\left(\frac{1}{3}\right)^2$$
, or $\frac{1}{9}$.
Perimeter Area
 $\frac{P}{42} = \frac{1}{3}$ $\frac{A}{96} = \frac{1}{9}$
 $3P = 42$ $9A = 96$
 $P = 14 \text{ mm}$ $A = 10\frac{2}{3} \text{ mm}^2$

Perimeter of $\triangle ABC$ is 14 mm, and area is $10\frac{2}{3}$ mm².

THINK AND DISCUSS, PAGE 490

1. Set up a proportion: $\frac{5.5}{x} = \frac{1}{25}$. Then solve for *x* to find actual dist.: x = 5.5(25) = 137.5 mi.

EXERCISES, PAGES 491-494

GUIDED PRACTICE, PAGE 491

1. indirect measurement

- **2.** Step 1 Convert measurements to inches. 5 ft 6 in. = 5(12) in. + 6 in. = 66 in. 4 ft = 4(12) in. = 48 in. 40 ft = 40(12) in. = 480 in. Step 2 Find ~ \triangle . Since marked \triangle are \cong , \triangle are ~ by AA ~. Step 3 Find height of dinosaur, *h*. $\frac{h}{66} = \frac{480}{48}$ $\frac{h}{66} = 10$ h = 10(66) = 660 in. Height of dinosaur is 660 in., or 55 ft.
- **3.** Use a ruler to measure to-scale length of \overline{AB} . Length is 0.25 in. To find actual length *AB*, write a proportion

comparing to-scale length to actual length. $\frac{0.25}{AB} = \frac{1}{AB}$

$$AB = 0.25(48) = 12$$
 ft

4. Use a ruler to measure to-scale length of \overline{CD} . Length is 0.75 in. To find actual length *CD*, write a proportion comparing to-scale length to actual length. $\frac{0.75}{CD} = \frac{1}{48}$

$$CD = 48$$

 $CD = 0.75(48) = 36$ ft

5. Use a ruler to measure to-scale length of \overline{EF} . Length is 1.25 in. To find actual length *EF*, write a proportion comparing to-scale length to actual length. $\frac{1.25}{FF} = \frac{1}{48}$

$$EF = 1.25(48) = 60$$
 ft

 Use a ruler to measure to-scale length of FG. Length is 0.5 in. To find actual length FG, write a proportion

comparing to-scale length to actual length. 0.5 - 1

- FG = 0.5(48) = 24 ft
- **7.** Step 1 Set up proportions to find length ℓ and width *w* of scale drawing.

$$\frac{\ell}{10} = \frac{1}{1}$$

$$\frac{w}{4.6} = \frac{1}{1}$$

$$\frac{\ell}{\ell} = 10 \text{ cm}$$

$$\frac{w}{4.6} = \frac{1}{1}$$

$$\frac{w}{4.6} = \frac{1}{1}$$
We have a state of the st

8. Step 1 Set up proportions to find length ℓ and width *w* of scale drawing.

 $\frac{\ell}{10} = \frac{1}{2}$ $\frac{\ell}{2\ell} = 10$ $\ell = 5 \text{ cm}$ $\frac{\ell}{2} \text{ Check students' drawings.}$ $\frac{\ell}{2} \frac{\ell}{2} \text{ Check students' drawings.}$

- **9.** Step 1 Set up proportions to find length ℓ and width *w* of scale drawing.
 - $\frac{b}{10} = \frac{1}{2.3}$ $\frac{w}{4.6} = \frac{1}{2.3}$ 2.3b = 10 b = 4.3 cm $\frac{w}{4.6} = \frac{1}{2.3}$ 2.3w = 4.6 cm w = 2 cmStep 2 Use a ruler to draw a rect. with new dimensions. (Check students' drawings.)
- **10.** Similarity ratio of *MNPQ* to *RSTU* is $\frac{4}{6}$, or $\frac{2}{3}$. By Proportional Perimeters and Areas Thm., ratio of perimeters is also $\frac{2}{6}$.

$$\frac{14}{P} = \frac{2}{3}$$

$$2P = 14(3) = 42$$

$$P = 21$$
Perimeter of *RSTU* is 21 cm

11. Ratio of areas is $\left(\frac{2}{3}\right)^2$, or $\frac{4}{9}$. $\frac{12}{A} = \frac{4}{9}$ 4A = 12(9) = 108 A = 27Area of *RSTU* is 27 cm².

PRACTICE AND PROBLEM SOLVING, PAGES 491-493

12. 5 ft 2 in. = 62 in.; 7 ft 9 in. = 93 in.; 15.5 ft = 186 in.

$$\frac{h}{62} = \frac{186}{93} = 2$$

$$h = 62(2) = 124 \text{ in.} = 10\frac{1}{3} \text{ ft or } 10 \text{ ft } 4 \text{ in.}$$
13. map dist. for $\overline{JK} = 6 \text{ cm}$

$$\frac{6}{5} = \frac{1}{5}$$

 $\frac{1}{JK} = \frac{1}{9.4}$ $JK = 6(9.4) \approx 57 \text{ km}$

- **14.** map dist. for \overline{NP} = 0.45 cm $\frac{0.45}{NP} = \frac{1}{9.4}$ *NP* = 0.45(9.4) ≈ 4 km
- **15. Step 1** Set up proportions to find base *b* and height *h* of scale drawing.

<u>b 1.5</u>	<u>h 1.5</u>
150 100	200 100
100b = 225	100h = 300
b = 2.25 in.	h = 3 in.

Step 2 Use a ruler to draw a rt. \triangle with new dimensions. (Check students' drawings.)

16. Step 1 Set up proportions to find base *b* and height *h* of scale drawing.

$$\frac{b}{150} = \frac{1}{300} \qquad \qquad \frac{h}{200} = \frac{1}{300} \\ 300b = 150 \qquad \qquad 300h = 200 \\ b = 0.5 \text{ in.} \qquad \qquad h \approx 0.67 \text{ in.} \\ \text{Step 2 Use a ruler to draw a rt. } \Delta \text{ with new} \\ \end{cases}$$

dimensions. (Check students' drawings.)

17. Step 1 Set up proportions to find base *b* and height *h* of scale drawing.

b_1	h _ 1
150 150	200 150
150 <i>b</i> = 150	150 <i>h</i> = 200
b=1 in.	$h \approx 1.3$ in.
Otom O []	بحجر والأثرين فراقي والتروير الم

Step 2 Use a ruler to draw a rt. \triangle with new dimensions. (Check students' drawings.)

18. scale factor $=\frac{60}{90} = \frac{2}{3}$ **19.** $\frac{A}{1944} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$ $\frac{P}{381} = \frac{2}{3}$ 9A = 77763P = 762 $A = 864 \text{ m}^2$ P = 254 m**20.** scale factor $=\frac{10 \text{ ft}}{0.5 \text{ in.}}$ = 20map dist. $=\frac{30}{16}$ in. $\frac{x}{\frac{30}{16}} = 20$ $x = \frac{10}{8}(20)$ = 25 ff= 25 ft $x = \frac{30}{16}(20)$ $\approx 38 \text{ ft}$ **22.** map dist. $=\frac{25}{16}$ in. $\frac{x}{\frac{25}{16}} = 20$ $x = \frac{25}{16}(20)$ **23.** map dist. $=\frac{32}{16}$ in. $\frac{x}{\frac{32}{16}} = 20$ $x = \frac{32}{16}(20)$ $x = \frac{32}{16}(20)$ 24. By Proportional Perimeters and Areas Thm., ~ ratio = ratio of perimeters = $\frac{8}{\alpha}$ 25. By Proportional Perimeters and Areas Thm., ratio of areas = $(\sim \text{ ratio})^2$. $\frac{16}{25} = (\sim \text{ ratio})^2$ $\sim \text{ ratio} = \sqrt{\frac{16}{25}} = \frac{4}{5}$ ratio of areas = $(\sim ratio)^2$ 26. ratio of areas = $(ratio of perims.)^2$ ratio of perims. = $\sqrt{\frac{4}{81}} = \frac{2}{9}$ 27. scale width = model width 50 $\frac{w}{15} = \frac{1}{50}$ w = $\frac{15}{50}$ = 0.3 ft $\frac{\text{scale length}}{\text{model length}} = \frac{1}{50}$ $\frac{\ell}{60} = \frac{1}{50}$ $\ell = \frac{60}{50} = 1.2 \text{ ft}$ **28a.** hyp. of $\triangle PQR = \sqrt{3^2 + 4^2} = 5$ in. hyp. of $\triangle WXY = \sqrt{6^2 + 8^2} = 10$ in. perimeter of $\triangle PQR$ perimeter of $\triangle WXY = \frac{3+4+5}{6+8+10}$ $=\frac{12}{24}=\frac{1}{2}$ **b.** $\frac{\text{area of } \triangle PQR}{\text{area of } \triangle WXZ} = \frac{\frac{1}{2}(4)(4)}{\frac{1}{2}(8)(6)}$ $=\frac{6}{24}=\frac{1}{4}$

c. The ratio of areas is square of ratio of perimeters.

29. Let ℓ_1 and w_1 be dimensions of rect. ABCD; let ℓ_2 and w_2 be dimensions of rect. EFGH. $A_1 = \ell_1 w_1$ $135 = \ell_1(9)$ $\ell_1 = 15$ in. Think: Rects. are \sim ; let scale factor be s. $\frac{\ell_2}{\ell_1} = \frac{w_2}{w_1} = s$ $\ell_2 = s\ell_1, w_2 = sw_1$ $A_2 = \ell_2 w_2$ $= (s\ell_1)(sw_1)$ $= (s\ell_1)(sw_1)$ = s^2A_1 240 = $135s^2$ $\frac{16}{9} = s^2$ $s = \frac{4}{3}$ $\ell_2 = s\ell_1$ $= \frac{4}{3}(15) = 20$ in. $w_2 = sw_1$ $= \frac{4}{3}(9) = 12$ in. 30. Check students' work. $\frac{\text{scale length}}{\text{actual length}} = \frac{\ell}{94} = \frac{0.25}{10}$ $10\ell = 23.5$ $\ell = 2.35$ in. $\frac{\text{scale width}}{\text{actual width}} = \frac{w}{50} = \frac{0.25}{10}$ 10w = 12.5w = 1.25 in. **31a.**~ ratio = $\frac{1 \text{ in.}}{2 \text{ ft}}$ = $\frac{1 \text{ in.}}{24 \text{ in.}}$ = $\frac{1}{24}$ **b.** actual dimensions are 24(2) = 48 in. and 24(3) = 72 in. actual area = (48)(72) = 3456 in.² model area = (2)(3) = 6 in.² $\frac{\text{model area}}{\text{actual area}} = \frac{3456}{6} = \frac{1}{576}$ **c.** actual area = $(4 \text{ ft})(6 \text{ ft}) = 24 \text{ ft}^2$ **32.** In photo, height of person $\approx \frac{1}{2}$ in. and height of statue $\approx 1\frac{5}{8}$ in. actual height of statue height of statue in photo actual height of person height of statue in person $\frac{h}{1.625} \approx \frac{5}{0.5}$ $0.5h \approx 8$ $h \approx 16 \, \text{ft}$ **33.** $\frac{\text{map length}}{\text{actual length}} = \text{scale factor}$ $\frac{\ell}{1 \text{ km}} = \frac{1 \text{ cm}}{900,000 \text{ cm}} = \frac{1 \text{ cm}}{9 \text{ km}}$ $\ell = \frac{1}{9} \text{ cm}$

34. By \triangle Midseg. Thm., def. of mdpt., and SSS \cong , $\triangle XYZ \cong \triangle ZJX$; so & have same height *h*. Therefore height of $\triangle JKL = h + h = 2h$. Since KL = 2ZX, area of $\triangle JKL = \frac{1}{2}(2ZX)(2h)$ = 2(ZX)h $= 4\left(\frac{1}{2}(ZX)(h)\right)$ $= 4(\text{area of } \triangle XYZ)$ $\frac{\text{area of } \triangle JKL}{\text{area of } \triangle XYZ} = \frac{4}{1}$

35. 1 cm : 5 m; Since each cm will represent 5 m, this drawing will be $\frac{1}{5}$ size of the 1 cm : 1 m drawing.

36.
$$\frac{4(x-2)}{4(2x)} = \frac{x-2}{2x} = \frac{4}{9}$$
$$9(x-2) = 8x$$
$$9x - 18 = 8x$$
$$x = 18$$
$$AB = 18 - 2 = 16 \text{ units}$$
$$HE = 2(18) = 36 \text{ units}$$

- **37.** With a scale of 1:1, drawing is same size as actual object.
- **38.** Suppose *x* and *y* are whole-number side lengths of smaller square and larger square. Then $2x^2 = y^2$. Thus $x\sqrt{2} = y$. A whole number that is multiplied by $\sqrt{2}$ cannot equal a whole number, since $\sqrt{2}$ is irrational.

TEST PREP, PAGE 493

39. D

area of $\triangle RST = (\text{scale factor})^2(\text{area of } \triangle ABC)$ = $\left(\frac{15}{10}\right)^2(24) = \frac{9}{4}(24) = 54 \text{ m}^2$

40. G

$$\frac{3.75}{\ell} = \frac{0.25}{1}$$

$$3.75 = 0.25\ell$$

$$\ell = 15 \text{ ft}$$

41. C. Ratio of perimeters = \sim ratio = $\frac{4}{2}$

42. F

area of
$$\triangle 2 = (\sim \text{ratio})^2 (\text{area of } \triangle 1)$$

= $\left(\frac{1}{2}\right)^2 (16) = 4 \text{ ft}^2$

CHALLENGE AND EXTEND, PAGE 494

43a.
$$\frac{x}{1.5 \times 10^{8} \text{ km}} = \frac{1 \text{ km}}{10^{9} \text{ km}} = \frac{10^{3} \text{ m}}{10^{9} \text{ km}}$$
$$x = \frac{10^{3} \text{ m}}{10^{9} \text{ km}} (1.5 \times 10^{8} \text{ km})$$
$$= 1.5 \times 10^{2} \text{ m or } 150 \text{ m}$$
$$43b. \frac{d}{1.28 \times 10^{4} \text{ km}} = \frac{10^{3} \text{ m}}{10^{9} \text{ km}}$$
$$d = \frac{10^{3} \text{ m}}{10^{9} \text{ km}} (1.28 \times 10^{4} \text{ km})$$
$$= 1.28 \times 10^{-2} \text{ m or } 1.28 \text{ cm}$$

44. It is given that $\triangle ABC \sim \triangle DEF$. $Let \frac{AB}{DE} = x$. Then AB = DEx by Mult. Prop. of =. Similarly, BC = EFxand AC = DFx. By Add. Prop. of =, AB + BC + AC = DEx + EFx + DFx. Thus AB + BC + AC = x (DE + EF + DF). By Div. Prop. of =, $\frac{AB + BC + AC}{DE + EF + DF} = x$. By subst., $\frac{AB + BC + AC}{DE + EF + DF} = \frac{AB}{DE}$. 45. It is given that $\triangle PQR \sim \triangle WXY$. Draw \bot s from Q and X to meet \overline{PR} at S and \overline{WY} at Z. By def. of \sim polygons, $\frac{PQ}{WX} = \frac{QR}{XY} = \frac{PR}{WY}$, and $\angle P \cong \angle W$. In $\triangle PQS$ and $\triangle WXZ$, $\angle PSQ \cong \angle WZX$. Thus $\triangle PQS \sim \triangle WXZ$ by $AA \sim \frac{PQ}{WZ} = \frac{QS}{XZ} = \frac{PS}{WZ}$ by def. of \sim polygons. $\frac{QR}{XY} = \frac{PR}{ZW}$ by subst. $\frac{Area of \triangle PQR}{area of \triangle WXY} = \frac{PR}{WY} \cdot \frac{QS}{XZ} = \frac{PR^2}{WY^2}$.

46a.
$$\frac{6}{WX} = \frac{1}{2}$$
 $\frac{7}{XY} = \frac{1}{2}$
 $WX = 12$
 $XY = 14$
 $\frac{10}{YZ} = \frac{1}{2}$
 $\frac{12}{WZ} = \frac{1}{2}$
 $YZ = 20$
 $WZ = 24$

d. *WX* = 12 = 2*PQ*; similarly *XY* = 2*QR*, *YZ* = 2*RS*, and *WZ* = 2*PS*. So eqn. is *y* = 2*x*.

SPIRAL REVIEW, PAGE 494

47.
$$(x-3)^2 = 49$$

 $x-3 = \pm 7$
 $x = 3 \pm 7$
 $x = 3 \pm 7$
 $x = 10 \text{ or } -4$
48. $(x + 1)^2 - 4 = 0$
 $(x + 1)^2 = 4$
 $x = -1 \pm 2$
 $= -3 \text{ or } 1$
49. $4(x + 2)^2 - 28 = 0$
 $4(x + 2)^2 = 28$
 $(x + 2)^2 = 7$
 $x + 2 = \pm \sqrt{7}$
 $x = -2 \pm \sqrt{7}$
 $a = 0.65 \text{ or } -4.65$
50. slope of $\overline{AB} = \frac{2}{3}$; slope of $\overline{CD} = \frac{-2}{-3} = \frac{2}{3}$
slope of $\overline{BC} = \text{ slope of } \overline{AD} = 0$
 $\overline{AB} \parallel \overline{CD} \text{ and } \overline{BC} \parallel \overline{AD}, \text{ so } ABCD \text{ is a } \Box$.

51. slope of
$$\overline{JK} = \frac{2}{2} = 1$$
; slope of $\overline{LM} = \frac{-2}{-2} = 1$
slope of $\overline{KL} = \frac{-3}{3} = -1$; slope of $\overline{JM} = \frac{-3}{3} = -1$
 $\overline{JK} \parallel \overline{LM}$ and $\overline{KL} \parallel \overline{JM}$, so $JKLM$ is a \Box .

52. 58*x* = 26*y y*:*x* = 58:26 = 29:13

7-6 DILATIONS AND SIMILARITY IN THE COORDINATE PLANE, PAGES 495–500

CHECK IT OUT! PAGES 495-497

1. Step 1 Multiply vertices of photo A(0, 0), B(0, 4), C(3, 4), D(3, 0) by $\frac{1}{2}$. Rect. ABCD Rect. A'B'C'D' $A(0, 0) \rightarrow A'(\frac{1}{2}(0), \frac{1}{2}(0)) \rightarrow A'(0, 0)$ $B(0, 0) \rightarrow B'(\frac{1}{2}(0), \frac{1}{2}(4)) \rightarrow B'(0, 2)$ $C(0, 0) \rightarrow C'(\frac{1}{2}(3), \frac{1}{2}(4)) \rightarrow C'(1.5, 2)$ $D(0, 0) \rightarrow D'(\frac{1}{2}(3), \frac{1}{2}(0)) \rightarrow D'(1.5, 0)$ Step 2 Plot pts. A'(0, 0), B'(0, 2), C'(1.5, 2), and D'(1.5, 0). Draw the rectangle. Check student's work **2.** Since $\triangle MON \sim \triangle POQ$,

 $\frac{PO}{MO} = \frac{OQ}{ON}$ $\frac{-15}{-10} = \frac{3}{2} = \frac{-30}{ON}$ 3ON = -60ON = -20

N lies on *y*-axis, so its *x*-coord. is 0. Since ON = -20, its *y*-coord. must be -20. Coords. of *N* are (0, -20). $(0, -30) \rightarrow \left(\frac{2}{3}(0), \frac{2}{3}(-30)\right) \rightarrow (0, -20)$, so scale factor is $\frac{2}{3}$. 3. Step 1 Plot pts. and draw ▲.

Step 2 Use Dist. Formula to find side lengths.

$$RS = \sqrt{(-3+2)^{2} + (1-0)^{2}} = \sqrt{2}$$

$$RT = \sqrt{(0+2)^{2} + (1-0)^{2}} = \sqrt{5}$$

$$RU = \sqrt{(-5+2)^{2} + (3-0)^{2}} = \sqrt{18} = 3\sqrt{2}$$

$$RV = \sqrt{(4+2)^{2} + (3-0)^{2}} = \sqrt{45} = 3\sqrt{5}$$

Step 3 Find similarity ratio.

$$\frac{RS}{RU} = \frac{\sqrt{2}}{3\sqrt{2}} = \frac{1}{3}$$

$$\frac{RT}{RV} = \frac{\sqrt{5}}{3\sqrt{5}} = \frac{1}{3}$$

Since $\frac{RS}{RU} = \frac{RT}{RV}$ and $\angle R \cong \angle R$ by Reflex. Prop.
of \cong , $\triangle RST \sim \triangle RUV$ by SAS \sim .

 Step 1 Multiply each coord. by 3 to find coords of vertices of △*M'N'P'*.

 $\begin{array}{l} M(-2,\,1) \to M'(3(-2),\,3(1)) = M'(-6,\,3) \\ N(2,\,2) \to N'(3(2),\,3(2)) = N'(6,\,6) \\ P(-1,\,-1) \to P'(3(-1),\,3(-1)) = P'(-3,\,-3) \\ \textbf{Step 2} \ \text{Graph } \triangle M'N'P'. \end{array}$

Step 3 Use Dist. Formula to find side lengths.

$$MN = \sqrt{(2+2)^2 + (2-1)^2} = \sqrt{17}$$

$$M'N' = \sqrt{(6+6)^2 + (6-3)^2} = \sqrt{153} = 3\sqrt{17}$$

$$NP = \sqrt{(-1-2)^2 + (-1-2)^2} = \sqrt{18} = 3\sqrt{2}$$

$$N'P' = \sqrt{(-3-6)^2 + (-3-6)^2} = \sqrt{162} = 9\sqrt{2}$$

$$MP = \sqrt{(-1+2)^2 + (-1-1)^2} = \sqrt{5}$$

$$M'P' = \sqrt{(-3+6)^2 + (-3-3)^2} = \sqrt{45} = 3\sqrt{5}$$
Step 4 Find similarity ratio.

$$\frac{M'N'}{MN} = \frac{3\sqrt{17}}{\sqrt{17}} = 3, \frac{NP'}{NP} = \frac{9\sqrt{2}}{3\sqrt{2}} = 3, \frac{M'P'}{MP} = \frac{3\sqrt{5}}{\sqrt{5}} = 3\sqrt{5}$$

 $\frac{MN}{MN} = \frac{3\sqrt{17}}{\sqrt{17}} = 3, \frac{NP}{NP} = \frac{3\sqrt{2}}{3\sqrt{2}} = 3, \frac{MP}{MP} = \frac{3\sqrt{3}}{\sqrt{5}} = 3$ Since $\frac{M'N'}{MN} = \frac{N'P'}{NP} = \frac{M'P'}{MP}, \Delta M'N'P' \sim \Delta MNP$ by SSS ~.

THINK AND DISCUSS, PAGE 497

1. The scale factor is 4, since each coord. of preimage is multiplied by 4 in order to get coords. of image.

6. Step 1 Plot pts. and draw A. Step 2 Use Dist. Formula to find side lengths. $AB = \sqrt{(-1-0)^2 + (1-0)^2} = \sqrt{2}$ $AC = \sqrt{(3-0)^2 + (2-0)^2} = \sqrt{13}$ $AD = \sqrt{(-2-0)^2 + (2-0)^2} = \sqrt{8} = 2\sqrt{2}$ $AE = \sqrt{(6-0)^2 + (4-0)^2} = \sqrt{52} = 2\sqrt{13}$ Step 3 Find similarity ratio. $\frac{AB}{AD} = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}$ $\frac{AC}{AE} = \frac{\sqrt{13}}{2\sqrt{13}} = \frac{1}{2}$ Since $\frac{AB}{AD} = \frac{AC}{AE}$ and $\angle A \cong \angle A$ by Reflex. Prop. of \cong , $\triangle ABC \sim \triangle ADE$ by SAS \sim . 7. Step 1 Plot pts. and draw A. Step 2 Use Dist. Formula to find side lengths. $JK = \sqrt{(-3+1)^2 + (-4-0)^2} = \sqrt{20} = 2\sqrt{5}$ $JL = \sqrt{(3+1)^2 + (-2-0)^2} = \sqrt{20} = 2\sqrt{5}$ $JM = \sqrt{(-4+1)^2 + (-6-0)^2} = \sqrt{45} = 3\sqrt{5}$ $JN = \sqrt{(5+1)^2 + (-3-0)^2} = \sqrt{45} = 3\sqrt{5}$ Step 3 Find similarity ratio. $\frac{JK}{JM} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$ $\frac{JL}{JN} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$ Since $\frac{JK}{JM} = \frac{JL}{JN}$ and $\angle J \cong \angle J$ by Reflex. Prop. of \cong , $\triangle JKL \sim \triangle JMN$ by SAS \sim .

factor is $\frac{5}{2}$

 Step 1 Multiply each coord. by 2 to find coords of vertices of △A'B'C'.

 $\begin{array}{l} A(1,4) \to A'(2(1),2(4)) = A'(2,8) \\ B(1,1) \to B'(2(1),2(1)) = B'(2,2) \\ C(3,1) \to C'(2(3),2(1)) = C'(6,2) \\ \textbf{Step 2 Graph } \triangle A'B'C'. \end{array}$

Step 3 Use Dist. Formula to find side lengths. $AB = \sqrt{(1-1)^2 + (1-4)^2} = 3$ $A'B' = \sqrt{(2-2)^2 + (2-8)^2} = 6$ $BC = \sqrt{(3-1)^2 + (1-1)^2} = 2$ $B'C' = \sqrt{(6-2)^2 + (2-2)^2} = 4$ $AC = \sqrt{(3-1)^2 + (1-4)^2} = \sqrt{13}$ $A'C' = \sqrt{(6-2)^2 + (2-8)^2} = \sqrt{52} = 2\sqrt{13}$ Step 4 Find similarity ratio. $\frac{A'B'}{AB} = \frac{6}{3} = 2, \frac{B'C'}{BC} = \frac{4}{2} = 2, \frac{A'C'}{AC} = \frac{2\sqrt{13}}{\sqrt{13}} = 2$ Since $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC}, \ \triangle ABC \sim \ \triangle A'B'C'$ by SSS ~. 9. Step 1 Multiply each coord. by $\frac{3}{2}$ to find coords of vertices of $\triangle R'S'T$. $R(-2, 2) \rightarrow R'\left(\frac{3}{2}(-2), \frac{3}{2}(2)\right) = R'(-3, 3)$ $S(2, 4) \rightarrow S'\left(\frac{3}{2}(2), \frac{3}{2}(4)\right) = S'(3, 6)$ $T(0, -2) \rightarrow T\left(\frac{3}{2}(0), \frac{3}{2}(-2)\right) = T'(0, -3)$ Step 2 Graph $\triangle R'S'T$.

$$RS = \sqrt{(2+2)^{2} + (4-2)^{2}} = \sqrt{20} = 2\sqrt{5}$$

$$R'S' = \sqrt{(3+3)^{2} + (6-3)^{2}} = \sqrt{45} = 3\sqrt{5}$$

$$ST = \sqrt{(0-2)^{2} + (-2-4)^{2}} = \sqrt{40} = 2\sqrt{10}$$

$$S'T' = \sqrt{(0-3)^{2} + (-3-6)^{2}} = \sqrt{90} = 3\sqrt{10}$$

$$RT = \sqrt{(0+2)^{2} + (-2-2)^{2}} = \sqrt{20} = 2\sqrt{5}$$

$$R'T = \sqrt{(0+3)^{2} + (-3-3)^{2}} = \sqrt{45} = 3\sqrt{5}$$

Step 4 Find similarity ratio.

$$\frac{R'S'}{RS} = \frac{3\sqrt{5}}{2\sqrt{5}} = \frac{3}{2}, \frac{S'T}{ST} = \frac{3\sqrt{10}}{2\sqrt{10}} = \frac{3}{2},$$

$$\frac{R'T'}{RT} = \frac{3\sqrt{5}}{2\sqrt{5}} = \frac{3}{2}$$

Since $\frac{R'S'}{RS} = \frac{S'T}{ST} = \frac{R'T}{RT}, \ \triangle RST \sim \triangle R'S'T$ by SSS ~.

PRACTICE AND PROBLEM SOLVING, PAGE 499

10. Coords. of kite are A(4, 5), B(9, 7), C(10, 11), and D(6, 10).
 Coords. of image are A(2, 2.5), B(4.5, 3.5),

12.
$$\frac{MO}{KO} = \frac{ON}{OL}$$
$$\frac{16}{KO} = \frac{-24}{-15}$$
$$-240 = -24KO$$
$$KO = 10$$
$$K \text{ on y-axis } \to K = (0, 10)$$
$$(0, 16) \to \left(\frac{5}{8}(0), \frac{5}{8}(16)\right) = (0, 10), \text{ so scale factor is } \frac{5}{8}.$$

- **13.** $DE = \sqrt{2^2 + 4^2} = 2\sqrt{5}, DF = \sqrt{4^2 + 4^2} = 4\sqrt{2}$ $DG = \sqrt{3^2 + 6^2} = 3\sqrt{5}, DH = \sqrt{6^2 + 6^2} = 6\sqrt{2}$ $\frac{DE}{DG} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}, \frac{DF}{DH} = \frac{4\sqrt{2}}{6\sqrt{2}} = \frac{2}{3}$ $\angle D \cong \angle D$ by Reflex. Prop. of \cong . So $\triangle DEF \sim \triangle DGH$ by SAS \sim .
- 14. $MN = \sqrt{5^2 + 10^2} = 5\sqrt{5}, MP = \sqrt{15^2 + 5^2} = 5\sqrt{10}$ $MQ = \sqrt{10^2 + 20^2} = 10\sqrt{5}, MR = \sqrt{30^2 + 10^2} = 10\sqrt{10}$ $\frac{MN}{MQ} = \frac{5\sqrt{5}}{10\sqrt{5}} = \frac{1}{2}, \frac{MP}{MR} = \frac{5\sqrt{10}}{10\sqrt{10}} = \frac{1}{2}$ $\angle M \cong \angle M$ by Reflex. Prop. of \cong . So $\triangle MNP \sim \triangle MQR$ by SAS \sim .
- Step 1 Multiply each coord. by 3 to find coords of vertices of △J'K'L'.
 - $J(-2, 0) \rightarrow J'(3(-2), 3(0)) = J'(-6, 0)$ $K(-1, -1) \rightarrow K'(3(-1), 3(-1)) = K'(-3, -3)$ $L(-3, -2) \rightarrow K'(3(-3), 3(-2)) = L'(-9, -6)$ **Step 2** Graph $\triangle J'K'L'$.

Step 3 Find side lengths. $JK = \sqrt{1^2 + 1^2} = \sqrt{2}, J'K' = \sqrt{3^2 + 3^2} = 3\sqrt{2}$ $KL = \sqrt{2^2 + 1^2} = \sqrt{5}, K'L' = \sqrt{6^2 + 3^2} = 3\sqrt{5}$ $JL = \sqrt{1^2 + 2^2} = \sqrt{5}, J'L' = \sqrt{3^2 + 6^2} = 3\sqrt{5}$ Step 4 Verify similarity. Since $\frac{J'K'}{JK} = \frac{K'L'}{KL} = \frac{J'L'}{JL} = 3, \Delta JKL \sim \Delta J'K'L'$ by SSS ~. **16.** Step 1 Multiply each coord. by $\frac{1}{2}$ to find coords of vertices of $\triangle M'N'P'$.

$$M(0, 4) \to M'\left(\frac{1}{2}(0), \frac{1}{2}(4)\right) = M'(0, 2)$$

$$N(4, 2) \to N'\left(\frac{1}{2}(4), \frac{1}{2}(2)\right) = N'(2, 1)$$

$$P(2, -2) \to P'\left(\frac{1}{2}(2), \frac{1}{2}(-2)\right) = P'(1, -1)$$
Step 2 Graph $\triangle M'N'P'$.

 $MN = \sqrt{4^2 + 2^2} = 2\sqrt{5}, M'N' = \sqrt{2^2 + 1^2} = \sqrt{5}$ $NP = \sqrt{2^2 + 4^2} = 2\sqrt{5}, N'P' = \sqrt{1^2 + 2^2} = \sqrt{5}$ $MP = \sqrt{2^2 + 6^2} = 2\sqrt{10}, M'P' = \sqrt{1^2 + 3^2} = \sqrt{10}$ Step 4 Verify similarity.
Since $\frac{M'N'}{MN} = \frac{N'P'}{NP} = \frac{M'P'}{MP} = \frac{1}{2}, \Delta MNP \sim \Delta M'N'P'$ by SSS ~.

- **17.** It is not a dilation; it changes shape of transformed figure.
- **18.** Solution B is incorrect. Scale factor is ratio of a lin. measure of image to corr. lin. measure of preimage, so scale factor is $\frac{UW}{BT} = \frac{3}{2}$.
- **19.** They are reciprocals. Similarity ratio of $\triangle ABC$ to $\triangle A'B'C'$ is $\frac{AB}{A'B'}$. Scale factor is $\frac{A'B'}{AB}$.
- **20a.** Should use origin as vertex of rt. \angle ; 1 unit reps. 60 cm \rightarrow 3 units rep. 180 cm; so coords. are J(0, 1), K(0, 0), L(3, 0).
 - **b.** $J \rightarrow J'(3(0), 3(1)) = J'(0, 3)$ $K \rightarrow K'(3(0), 3(0)) = K'(0, 0)$ $L \rightarrow L'(3(3), 3(0)) = L'(9, 0)$

			•						•
_	5 -	y							
	J'		-						
•	-	-					<u> </u>	<i>.</i>	X
	0			_	-	5		Ľ	

TEST PREP, PAGE 500

21. A Check similarity ratio: $\frac{2.4}{4} = \frac{3}{5} = \frac{-6}{-10}$

22. H

Perimeter is a lin. measure. So P' = 2P = 2(60) = 120.

23. A $AB = 4, AC = BC = \sqrt{2^2 + 4^2} = 2\sqrt{5}$ $DE = |3 - 1| = 2, DF = EF = \sqrt{1^2 + 2^2} = \sqrt{5}$ $\frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC} = \frac{1}{2}$

24. 15

$$A \rightarrow A'(3(3), 3(2)) = A'(9, 6)$$

 $B \rightarrow B'(3(7), 3(5)) = B'(21, 15)$
 $A'B' = \sqrt{12^2 + 9^2} = \sqrt{225} = 15$

CHALLENGE AND EXTEND, PAGE 500

25. Possible ~ statements: $\triangle XYZ \sim \triangle MNP$, $\triangle MPN$, $\triangle NMP$, $\triangle NPM$, $\triangle PMN$, or $\triangle PNM$. For each ~ statement, *Z* could lie either above or below \overleftarrow{XY} . So there are 2(6) = 12 different \triangle . They are all different, since *MN*, *NP*, and *MP* are all \neq .

26. scale factor $=\frac{XY}{MP} = \frac{2}{4} = \frac{1}{2}$ From *M* to *N* is rise of 2 and run of 1. So from *X* to *Z* is *either* rise of 1 and run of $\frac{1}{2}$ or rise of -1 and

run of
$$\frac{1}{2}$$
. Therefore $Z = \left(1 \pm \frac{1}{2}, -2 \pm 1\right) = \left(1\frac{1}{2}, -1\right)$
or $\left(1\frac{1}{2}, -3\right)$.

27. All corr. \leq of rects. are \cong because they are all rt. \leq . Suppose 1st rect. has vertex on line y = 2x at (a, b). This pt. is a solution to the eqn., so b = 2a, and coords. of vertex are (a, 2a). Similarly, for 2nd rect., coords. of vertex on line y = 2x must be (c, 2c).

1st rect. has dimensions *a* and 2*a*, and 2nd rect. has dimensions *c* and 2*c*. So all ratios of corr. sides = $\frac{c}{a}$.

Therefore rects. are \sim by def.

28. scale factor $= \frac{DE}{AB} = \frac{6}{3} = 2$ From *A* to *C* is rise of 2 and run of 1. 2 positions for *F* are reflections in horiz. line \overrightarrow{DE} . So from *D* to *F* is rise of ±4 and run of 2. Therefore $F = (1 + 2, -1 \pm 4) = (3, 3)$ or (3, -5).

SPIRAL REVIEW, PAGE 500

- **29.** Possible answer: $2(50) + 5 + w \ge 250$ $105 + w \ge 250$
- **30.** Think: $\triangle DEH \cong \triangle FEH$ by HL. So by CPCTC, $\overline{HF} \cong \overline{DF}$ HF = DF = 6.71
- **31.** Think: By Isosc. \triangle Thm., $\angle EDH \cong \angle EFH$, so by Rt. $\angle \cong$ Thm., $3rd \triangleq$ Thm, and ASA, $\triangle DFG \cong \triangle FDJ$. So by CPCTC, $\overline{JF} \cong \overline{GD}$ JF = GD = 5

32. Think: Use Pyth. Thm.

$$CF = \sqrt{CH^2 + HF^2} = \sqrt{2^2 + 6.71^2} \approx 7.00$$

33.
$$\frac{RT}{UV} = \frac{RS}{US}$$

 $\frac{RT}{9} = \frac{6+2}{6} = \frac{4}{3}$
 $3RT = 36$
 $RT = 12$
34. $\frac{VT}{VS} = \frac{RU}{US}$
 $\frac{x}{x+3} = \frac{2}{6} = \frac{1}{3}$
 $3x = x+3$
 $2x = 3$
 $x = 1.5$
 $VT = x = 1.5$
35. $ST = SV + VT$
 $= x+3+x$
 $= 2x+3$

DIRECT VARIATION, PAGE 501

= 2(1.5) + 3 = 6

TRY THIS, PAGE 501

1. Step 1 Make a table to record data.

Scale Factor	Side Length $s = x(6)$	Perimeter P = 6s
$\frac{1}{2}$	3	18
2	12	72
3	18	108
4	24	144
5	30	180

Step 2 Graph pts.

Since pts. are collinear and line that contains them includes origin, relationship is a direct variation.

Step 3 Find eqn. of direct variation.

y = kx 180 = k(5) 36 = kThus constant of variation is 36.

2. Step 1 Make a table to record data.

Scale	Sic	de Lengt	Perimeter	
Factor x	a = x(3)	b = x(6)	c = x(7)	P = a + b + c
$\frac{1}{2}$	$1\frac{1}{2}$	3	3 <u>1</u> 2	8
2	6	12	14	32
3	9	18	21	48
4	12	24	28	64
5	15	30	35	80

Step 2 Graph pts.

Since pts. are collinear and line that contains them includes origin, relationship is a direct variation.

Step 3 Find eqn. of direct variation.

y = kx

$$80 = k(5)$$

 $k = 16$

$$K = 16$$

Thus constant of variation is 16.

3. Step 1 Make a table to record data.

Scale Factor	Side Length $s = x(3)$	Perimeter $P = 4s$
$\frac{1}{2}$	$1\frac{1}{2}$	6
2	6	24
3	9	36
4	12	48
5	15	60

Step 2 Graph pts.

Since pts. are collinear and line that contains them includes origin, relationship is a direct variation.

Step 3 Find eqn. of direct variation.

y = kx 60 = k(5)k = 12

Thus constant of variation is 12.

MULTI-STEP TEST PREP, PAGE 502

1.
$$\frac{EG}{FH} = \frac{GJ}{HK} = \frac{JC}{KC} = \frac{AE}{BF} = \frac{42.2}{40} = 1.055$$

 $EG = 1.055FH$
 $= 1.055(40) = 42.2 \text{ cm}$
 $GJ = 1.055HK$
 $= 1.055(35) \approx 36.9 \text{ cm}$
 $JC = 1.055KC$
 $= 1.055(35) \approx 36.9 \text{ cm}$
2. area of $\triangle ABC = \frac{1}{2}(BC)(AB)$
 $= \frac{1}{2}(40 + 40 + 35 + 35)(50)$
 $= 3750 \text{ cm}^2$
Think: Use Proportional Perimeters and Areas Thm

Think: Use Proportional Perimeters and Areas Thm. area of drawing = (scale factor)²(area of $\triangle ABC$)

$$= \left(\frac{1}{25}\right)^2 (3750)$$
$$= \frac{1}{625} (3750) = 6 \text{ cm}^2$$

7B READY TO GO ON?, PAGE 503

1.
$$\frac{ST}{QT} = \frac{RT}{PT}$$

2. $\frac{AB}{AC} = \frac{BD}{CD}$
 $\frac{ST}{ST + 16} = \frac{14}{14 + 12}$
 $26ST = 14(ST + 16)$
 $26ST = 14ST + 224$
 $12ST = 224$
 $ST = 18\frac{2}{3}$
3. $\frac{FH}{EG} = \frac{HK}{GJ}$
 $\frac{FH}{3.6} = \frac{2}{2.4}$
 $2.4FH = 7.2$
 $FH = 3 \text{ cm}$
4. $\frac{\text{plan length of } \overline{AB}}{AB} = \frac{0.25}{AB} = \frac{1.5}{60}$
 $15 = 1.5AB$
 $AB = 10 \text{ ft}$
5. $\frac{\text{plan length of } \overline{BC}}{BC} = \frac{0.75}{BC} = \frac{1.5}{60}$
 $45 = 1.5BC$
 $BC = 30 \text{ ft}$
6. $\frac{\text{plan length of } \overline{CD}}{CD} = \frac{1}{CD} = \frac{1.5}{60}$
 $60 = 1.5CD$
 $CD = 40 \text{ ft}$

7.
$$\frac{p \text{lan length of } \overline{EF}}{EF} = \underbrace{0.5}_{0.5} = \frac{1.5}{60}$$
$$\underbrace{EF = 20 \text{ if } EF = 20 \text$$

Holt Geometry

LESSON 7-3, PAGE 505

18.	Statements		Reasons
	1. $JL = \frac{1}{3}JN, JK = \frac{1}{3}JM$		1. Given
	$2. \frac{JL}{JN} = \frac{1}{3}, \frac{JK}{JM} = \frac{1}{3}$		2. Div. Prop. of =
	3. $\frac{JL}{JN} = \frac{JK}{JM}$		3. Trans. Prop. of $=$
	4. $\angle J \cong \angle J$ 5. $\triangle JKL \sim \triangle JMN$		4. Reflex. Prop. of ≅ 5. SAS ~ <i>Steps 3, 4</i>
19.	Statements		Reasons
	1. QR ST		1. Given
	2. $\angle RQP \cong \angle STP$ 3. $\angle RPQ \cong \angle SPT$		2. Alt. Int.
	4. $\triangle PQR \sim \triangle PTS$		4. AA ~ <i>Steps 2, 3</i>
20.	Statements		Reasons
	1. <u>BC</u> ∥ <u>CE</u>		Given
	2. $\angle ABD \cong \angle C$ 3. $\angle ADB \cong \angle E$		Corr. ≰ Post. Corr. ≰ Post.
	4. $\triangle ABD \sim \triangle ACE$		AA ~ <i>Steps 2, 3</i>
	$5. \frac{AB}{AC} = \frac{BD}{CE}$	5.	Def. of \sim polygons
	$6. \ AB(CE) = AC(BD)$	6.	Cross Products Prop.
LE	SSON 7-4, PAGE 506		
	0.5	2	$\frac{ST}{10} = \frac{3}{9}$
21.	$\frac{15}{15} = \frac{12}{12}$ 12 <i>CE</i> = 120		$rac{10}{10} = rac{9}{9}$ $rac{9}{9}ST = 30$
	CE = 10		$ST = 3\frac{1}{3}$
23.	$\frac{JK}{IM} = \frac{JL}{IM} = \frac{1}{2}$	4. /	$EC/EA = \frac{ED}{EB} = \frac{3}{7}$
	Since $\frac{JK}{M} = \frac{JL}{N}$		Since $\frac{EC}{EA} = \frac{ED}{EB}$
	$\frac{JM}{KL} \parallel \frac{JM}{MN}$ by Conv. of \triangle		$\frac{EA}{AB} \parallel \frac{ED}{CD}$ by Conv. of \triangle
	Prop. Thm.		Prop. Thm.
25.	$\frac{SU}{RU} = \frac{SV}{RV}$ 2	6.	$\frac{x+6}{30} = \frac{2x}{24}$
	$\frac{RU}{\frac{y+1}{8}} = \frac{RV}{\frac{2y}{12}}$		24(x+6) = 30(2x)
	8 12 12 12(y+1) = 8(2y)	2	24x + 144 = 60x 144 = 36x
	12y + 12 = 16y		x = 4
	12 = 4y $y = 3$,	AB = x + 6 + 2x $= 3x + 6$
	SU = 3 + 1 = 4 SV = 2(3) = 6		= 3(4) + 6 = 18
27.	P = a + b + c where $b = 5$: a -	+ $x, c = 3 + 5 = 8$
	$\frac{3}{a} = \frac{5}{a+x}$		
	3(a + x) = 5a 3a + 3x = 5a		
	2a = 3x $P = a + a + x + 8$		
	= 2a + x + 8		
	= 4x + 8		

LESSON 7-5, PAGE 507

```
28. 3 ft = 3(12) in. = 36 in.

5 ft 4 in. = 5(12) + 4 in. = 64 in.

14 ft 3 in. = 14(12) + 3 in. = 171 in.

\frac{x}{64} = \frac{171}{36}

36x = 10,944

x = 304 in. = 25 ft 4 in.

29. \frac{6}{x} = \frac{12}{3 + x}

6(3 + x) = 12x

18 + 6x = 12x

18 = 6x
```

$$x = 3$$
 ft

LESSON 7-6, PAGE 507

30. By the Dist. Formula: $RS = \sqrt{2^2 + 2^2} = 2\sqrt{2}; RU = \sqrt{4^2 + 4^2} = 4\sqrt{2}$ $RT = \sqrt{1^2 + 3^2} = \sqrt{10}; RV = \sqrt{2^2 + 6^2} = 2\sqrt{10}$ $\frac{RS}{RU} = \frac{RT}{RV} = \frac{1}{2}. \ \angle R \cong \angle R \text{ by the Reflex. Prop. of }\cong.$ So $\triangle RST \sim \triangle RUV$ by SAS $\sim.$

31. By the Dist. Formula:

$$JK = \sqrt{2^2 + 1^2} = \sqrt{5}; JM = \sqrt{8^2 + 4^2} = 4\sqrt{5}$$

$$JL = |2 - 4| = 2; JN = |-4 - 4| = 8$$

$$\frac{JK}{JM} = \frac{JL}{JN} = \frac{1}{4}. \ \angle J \cong \angle J \text{ by the Reflex. Prop. of } \cong.$$
So $\triangle JKL \sim \triangle JMN \text{ by SAS } \sim.$
32. $\frac{AO}{CO} = \frac{OB}{OD}$

$$\frac{12}{18} = \frac{OB}{-9}$$

-108 = 18OB
$$OB = -6$$

Since *x*-coord. of *B* is 0, *B* = (0, -6)
Scale factor = $\frac{12}{18} = \frac{2}{3}$.

33. Image vertices are K'(0, 9), L'(0, 0), M'(12, 0). By the Dist. Formula: KL = 3; K'L' = 9; LM = 4; L'M' = 12 $KM = \sqrt{3^2 + 4^2} = 5; K'M' = \sqrt{9^2 + 12^2} = 15$ All proportions = 3, so $\triangle KLM \sim \triangle K'L'M'$ by SSS ~.

CHAPTER TEST, PAGE 508

1. slope of
$$\ell = \frac{-6-4}{10+6} = -\frac{5}{8}$$

2. $\frac{5}{8} = \frac{3.5}{W}$
 $5W = 28$
 $W = 5.6$ in.

3.
$$\angle B \cong \angle N$$
 and $\angle C \cong \angle P$; yes, by AA ~;
~ ratio = $\frac{AB}{MN} = \frac{40}{60} = \frac{2}{3}$; $\triangle ABC \sim \triangle MNP$

4. $\frac{DE}{HJ} = \frac{55}{22} = \frac{5}{2}; \frac{DG}{HL} = \frac{40}{16} = \frac{5}{2}$ yes; since all \measuredangle are rt. \measuredangle and therefore \cong ; \sim ratio $=\frac{5}{2}; DEFG \sim HJKL$ by def.

5.	Statements	Reasons
	1. <u>RSTU is a</u> □. 2. <u>RU ST</u> 3. ∠VRW ≅ ∠TSW 4. ∠RWV ≅ ∠SWT 5. △RWV ~ △SWT	 Given Def. of □ Alt. Int. & Thm. Vert & Thm. AA ~ Steps 3, 4
6.	710 DQ	$\frac{PR}{21} = \frac{10}{18}$ 18PR = 210 PR = 11 $\frac{2}{3}$
8.	$\frac{YW}{XY} = \frac{WZ}{XZ}$ $\frac{\frac{t}{2}}{8} = \frac{t-2}{12.8}$	
	$12.8\left(\frac{t}{2}\right) = 8(t-2) 6.4t = 8t - 16 16 = 1.6t t = 10 YW = \frac{t}{2} = 5$	
	WZ = t - 2 = 8 5 ft 8 in. = 5(12) + 8 in. = 68 3 ft = 36 in.; 27 ft = 324 in. $\frac{h}{68} = \frac{324}{36} = 9$ h = 68(9) = 612 in. = 51 ft	
10.	$\frac{\text{plan length of }\overline{AB}}{AB} = \frac{1.5}{30}$ $\frac{1.25}{AB} = \frac{1.5}{30}$ $37.5 = 1.5AB$ $\overline{AB} = 25 \text{ ft}$	
	By the Dist. Formula: $AB = \sqrt{3^2 + 1^2} = \sqrt{10}; AD$ AC = 3 - 5 = 2; AE = -1	-5 = 6
	$\frac{AB}{AD} = \frac{AC}{AE} = \frac{1}{3}. \ \angle A \cong \angle A \text{ by}$ So $\triangle JKL \sim \triangle JMN \text{ by SAS}$	the Reflex. Prop. of \cong . ~.
12.		

COLLEGE ENTRANCE EXAM PRACTICE, PAGE 509

1. A $\frac{BC}{CD} = \frac{AB}{DE}$ $\frac{BC}{9 - BC} = \frac{4}{8} = \frac{1}{2}$ $2BC = 9 - BC$ $3BC = 9$ $BC = 3$	2. C $\frac{x}{21} = \frac{6}{14}$ 14x = 126 x = 9	
Since \overline{BD} is horiz., <i>y</i> -coord. of <i>C</i> is 1; so $C = (1 + 3, 1) = (4, 1)$.		
3. D; $x + y + z = 750,000$ $\frac{z}{750,000} = \frac{6}{4 + 5 + 6} = 5z = 1,500,000$ z = 300,000		
4. D $\frac{35}{9} = \frac{h}{1.2}$ 42 = 9h $h = 4\frac{2}{3}$ ft = 4 ft 8 in.	5. D In any square, all ▲ are rt ▲, so ≅; all sides are ≅.	